3 research outputs found

    Neural network based patient recovery estimation of a PAM-based rehabilitation robot

    Get PDF
    Rehabilitation robots have shown a promise in aiding patient recovery by supporting them in repetitive, systematic training sessions. A critical factor in the success of such training is the patient’s recovery progress, which can guide suitable treatment plans and reduce recovery time. In this study, a neural network-based approach is proposed to estimate the patient’s recovery, which can aid in the development of an assist-as-needed training strategy for the gait training system. Experimental results show that the proposed method can accurately estimate the external torques generated by the patient to determine their recovery. The estimated patient recovery is used for an impedance control of a 2-DOF robotic orthosis powered by pneumatic artificial muscles, which improves the robot joint compliance coefficients and makes the patient more comfortable and confident during rehabilitation exercises

    Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art

    Get PDF
    Robot-assisted rehabilitation has become a new mainstream trend for the treatment of stroke patients with movement disability. Pneumatic muscle (PM) is one of the most promising actuators for rehabilitation robots, due to its inherent compliance and safety features. In this paper, we conduct a systematic review on the soft rehabilitation robots driven by pneumatic muscles. This review discusses up to date mechanical structures and control strategies for PMs-actuated rehabilitation robots. A variety of state-of-the-art soft rehabilitation robots are classified and reviewed according to the actuation configurations. Special attentions are paid to control strategies under different mechanical designs, with advanced control approaches to overcome PM’s highly nonlinear and time-varying behaviors and to enhance the adaptability to different patients. Finally, we analyze and highlight the current research gaps and the future directions in this field, which is potential for providing a reliable guidance on the development of advanced soft rehabilitation robots

    Angle Tracking Adaptive Backstepping Control for a Mechanism of Pneumatic Muscle Actuators via an AESO

    No full text
    corecore