10 research outputs found

    Computationally Efficient DOA Tracking Algorithm in Monostatic MIMO Radar with Automatic Association

    Get PDF
    We consider the problem of tracking the direction of arrivals (DOA) of multiple moving targets in monostatic multiple-input multiple-output (MIMO) radar. A low-complexity DOA tracking algorithm in monostatic MIMO radar is proposed. The proposed algorithm obtains DOA estimation via the difference between previous and current covariance matrix of the reduced-dimension transformation signal, and it reduces the computational complexity and realizes automatic association in DOA tracking. Error analysis and Cramér-Rao lower bound (CRLB) of DOA tracking are derived in the paper. The proposed algorithm not only can be regarded as an extension of array-signal-processing DOA tracking algorithm in (Zhang et al. (2008)), but also is an improved version of the DOA tracking algorithm in (Zhang et al. (2008)). Furthermore, the proposed algorithm has better DOA tracking performance than the DOA tracking algorithm in (Zhang et al. (2008)). The simulation results demonstrate effectiveness of the proposed algorithm. Our work provides the technical support for the practical application of MIMO radar

    An Exact Near-Field Model Based Localization for Bistatic MIMO Radar with COLD arrays

    Get PDF
    Most existing near-field (NF) source localization algorithms are developed based on the Fresnel approximation model, and assume that the spatial amplitudes of the target at the sensors are equal. Unlike these algorithms, an NF source parameter estimation algorithm is proposed, based on the exact spatial propagation geometry model, for bistatic multiple-input multiple-output (MIMO) radar deployed with a linear concentered orthogonal loop and dipole (COLD) array at both the transmitter and receiver. The proposed method first compresses the output signal of the matched filter at the receiver into a third-order parallel factor (PARAFAC) data model, on which a trilinear decomposition is performed, and subsequently three factor matrices can be obtained. Then, multiple parameters of interest, including direction-of-departure (DOD), direction-of-arrival (DOA), range from transmitter to target (RFTT), range from target to receiver (RFTR), two-dimensional (2-D) transmit polarization angle (TPA) and 2-D receive polarization angle (RPA), are estimated from the spatial amplitude ratio exploiting the rotation invariant property and the Khatri-Rao product. Finally, the phase uncertainties of transmit and receive arrays can be extracted from additional phase items. The proposed algorithm avoids spectrum peak search, and the estimated parameters in closed forms can be automatically matched unambiguously. In addition, it is suitable for non-uniform linear arrays (NLA) with arbitrary array element spacing and phase uncertainty. Advantages of the proposed method are demonstrated by simulation results

    Twenty-five years of sensor array and multichannel signal processing: a review of progress to date and potential research directions

    Get PDF
    In this article, a general introduction to the area of sensor array and multichannel signal processing is provided, including associated activities of the IEEE Signal Processing Society (SPS) Sensor Array and Multichannel (SAM) Technical Committee (TC). The main technological advances in five SAM subareas made in the past 25 years are then presented in detail, including beamforming, direction-of-arrival (DOA) estimation, sensor location optimization, target/source localization based on sensor arrays, and multiple-input multiple-output (MIMO) arrays. Six recent developments are also provided at the end to indicate possible promising directions for future SAM research, which are graph signal processing (GSP) for sensor networks; tensor-based array signal processing, quaternion-valued array signal processing, 1-bit and noncoherent sensor array signal processing, machine learning and artificial intelligence (AI) for sensor arrays; and array signal processing for next-generation communication systems

    Beamforming and Direction of Arrival Estimation Based on Vector Sensor Arrays

    Get PDF
    Array signal processing is a technique linked closely to radar and sonar systems. In communication, the antenna array in these systems is applied to cancel the interference, suppress the background noise and track the target sources based on signals'parameters. Most of existing work ignores the polarisation status of the impinging signals and is mainly focused on their direction parameters. To have a better performance in array processing, polarized signals can be considered in array signal processing and their property can be exploited by employing various electromagnetic vector sensor arrays. In this thesis, firstly, a full quaternion-valued model for polarized array processing is proposed based on the Capon beamformer. This new beamformer uses crossed-dipole array and considers the desired signal as quaternion-valued. Two scenarios are dealt with, where the beamformer works at a normal environment without data model errors or with model errors under the worst-case constraint. After that, an algorithm to solve the joint DOA and polarisation estimation problem is proposed. The algorithm applies the rank reduction method to use two 2-D searches instead of a 4-D search to estimate the joint parameters. Moreover, an analysis is given to introduce the difference using crossed-dipole sensor array and tripole sensor array, which indicates that linear crossed-dipole sensor array has an ambiguity problem in the estimation work and the linear tripole sensor array avoid this problem effectively. At last, we study the problem of DOA estimation for a mixture of single signal transmission (SST) signals and duel signal transmission (DST) signals. Two solutions are proposed: the first is a two-step method to estimate the parameters of SST and DST signals separately; the second one is a unified one-step method to estimate SST and DST signals together, without treating them separately in the estimation process

    Direction of Arrival Estimation Accuracy Enhancement via Using Displacement Invariance Technique

    Get PDF
    A new algorithm for improving Direction of Arrival Estimation (DOAE) accuracy has been carried out. Two contributions are introduced. First, Doppler frequency shift that resulted from the target movement is estimated using the displacement invariance technique (DIT). Second, the effect of Doppler frequency is modeled and incorporated into ESPRIT algorithm in order to increase the estimation accuracy. It is worth mentioning that the subspace approach has been employed into ESPRIT and DIT methods to reduce the computational complexity and the model’s nonlinearity effect. The DOAE accuracy has been verified by closed-form Cramér-Rao bound (CRB). The simulation results of the proposed algorithm are better than those of the previous estimation techniques leading to the estimator performance enhancement

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties
    corecore