79 research outputs found

    Robotic Psychology. What Do We Know about Human-Robot Interaction and What Do We Still Need to Learn?

    Get PDF
    “Robotization”, the integration of robots in human life will change human life drastically. In many situations, such as in the service sector, robots will become an integrative part of our lives. Thus, it is vital to learn from extant research on human-robot interaction (HRI). This article introduces robotic psychology that aims to bridge the gap between humans and robots by providing insights into particularities of HRI. It presents a conceptualization of robotic psychology and provides an overview of research on service-focused human-robot interaction. Theoretical concepts, relevant to understand HRI with are reviewed. Major achievements, shortcomings, and propositions for future research will be discussed

    Mechanical Empathy Seems Too Risky. Will Policymakers Transcend Inertia and Choose for Robot Care? The World Needs It

    Get PDF
    An ageing population, increasing longevity and below-replacement fertility increase the care burden worldwide. This comes with age-related diseases such as Alzheimer disease and other dementias, cardiovascular disorders, cancer and—hardly noticed—pandemic loneliness. The burden, both emotionally and economically, starts to become astronomical and cannot be carried by those few who need to combine care with work and family. Social solidarity programmes are part of the answer, but they do not relieve the human helper. Yet, many hands are needed where but a few are available. Capacity issues can be solved by the introduction of care robots. Research shows that state-of-the-art technology is such that care robots can become nonthreatening social entities and be accepted and appreciated by the lonesome. Massive employment of such devices is impeded, however, sufficient governmental support of R&D is lacking—financially and regulatorily. This is where policymakers should step in and get over their moral prejudices and those of their voters and stop being afraid of losing political backing. They will regain it in the long run

    An interactive interface for nursing robots.

    Get PDF
    Physical Human-Robot Interaction (pHRI) is inevitable for a human user while working with assistive robots. There are various aspects of pHRI, such as choosing the interface, type of control schemes implemented and the modes of interaction. The research work presented in this thesis concentrates on a health-care assistive robot called Adaptive Robot Nursing Assistant (ARNA). An assistive robot in a health-care environment has to be able to perform routine tasks and be aware of the surrounding environment at the same time. In order to operate the robot, a teleoperation based interaction would be tedious for some patients as it would require a high level of concentration and can cause cognitive fatigue. It would also require a learning curve for the user in order to teleoperate the robot efficiently. The research work involves the development of a proposed Human-Machine Interface (HMI) framework which integrates the decision-making module, interaction module, and a tablet interface module. The HMI framework integrates a traded control based interaction which allows the robot to take decisions on planning and executing a task while the user only has to specify the task through a tablet interface. According to the preliminary experiments conducted as a part of this thesis, the traded control based approach allows a novice user to operate the robot with the same efficiency as an expert user. Past researchers have shown that during a conversation with a speech interface, a user would feel disengaged if the answers received from the interface are not in the context of the conversation. The research work in this thesis explores the different possibilities of implementing a speech interface that would be able to reply to any conversational queries from the user. A speech interface was developed by creating a semantic space out of Wikipedia database using Latent Semantic Analysis (LSA). This allowed the speech interface to have a wide knowledge-base and be able to maintain a conversation in the same context as intended by the user. This interface was developed as a web-service and was deployed on two different robots to exhibit its portability and the ease of implementation with any other robot. In the work presented, a tablet application was developed which integrates speech interface and an onscreen button interface to execute tasks through ARNA robot. This tablet interface application can access video feed and sensor data from robots, assist the user with decision making during pick and place operations, monitor the user health over time, and provide conversational dialogue during sitting sessions. In this thesis, we present the software and hardware framework that enable a patient sitter HMI, and together with experimental results with a small number of users that demonstrate that the concept is sound and scalable

    A Review on Usability and User Experience of Assistive Social Robots for Older Persons

    Get PDF
    In the advancement of human-robot interaction technology, assistive social robots have been recognized as one of potential technologies that can provide physical and cognitive supports in older persons care. However, a major challenge faced by the designers is to develop an assistive social robot with prodigious usability and user experience for older persons who were known to have physical and cognitive limitations. A considerable number of published literatures was reporting on the technological design process of assistive social robots. However, only a small amount of attention has been paid to review the usability and user experience of the robots. The objective of this paper is to provide an overview of established researches in the literatures concerning usability and user experience issues faced by the older persons when interacting with assistive social robots. The authors searched relevant articles from the academic databases such as Google Scholar, Scopus and Web of Science as well as Google search for the publication period 2000 to 2021. Several search keywords were typed such as ‘older persons’ ‘elderly’, ‘senior citizens’, ‘assistive social robots’, ‘companion robots’, ‘personal robots’, ‘usability’ and ‘user experience’. This online search found a total of 215 articles which are related to assistive social robots in elderly care. Out of which, 54 articles identified as significant references, and they were examined thoroughly to prepare the main content of this paper. This paper reveals usability issues of 28 assistive social robots, and feedbacks of user experience based on 41 units of assistive social robots. Based on the research articles scrutinized, the authors concluded that the key elements in the design and development of assistive social robots to improve acceptance of older persons were determined by three factors: functionality, usability and users’ experience. Functionality refers to ability of robots to serve the older persons. Usability is ease of use of the robots. It is an indicator on how successful of interaction between the robots and the users. To improve usability, robot designers should consider the limitations of older persons such as vision, hearing, and cognition capabilities when interacting with the robots. User experience reflects to perceptions, preferences and behaviors of users that occur before, during and after use the robots. Combination of superior functionality and usability lead to a good user experience in using the robots which in the end achieves satisfaction of older persons

    Development and comparison of customized voice-assistant systems for independent living older adults

    Get PDF
    Voice-controlled in-home personal assistants have great potential to assist older adults. This thesis explores the aspects of human-computer interface design, specifically a voice assistant, to help older adults manage their personal health, especially in the case of chronic health conditions. In our previous work, we have built a web interface for caregivers to monitor older adults' health changes based on in-home sensor data from motion sensors, bed sensors, and depth sensors. Data collected from these sensors are stored in servers and processed using several algorithms to obtain health and activity parameters including gait, fall risk, detect fall, motion patterns, sleep, heart rate, and respiration rate, as well as to generate health alerts. The sensor system with automated health alerts and care coordination has been shown to help seniors maintain better functionality. In our current research project, we focus on developing a consumer interface for older adults and their designated trusted others that can provide health information on-demand, based on spoken queries. The health information is presented as both audio and visual displays and uses graphical visualizations and linguistic summaries of the sensor data trends and changes. The goal is to present data in a form that is simple to understand. To accomplish our objective of creating an easy-to-use-and-understand health data interface for older adults, we explore voice-controlled, in-home personal assistants as a solution. Two voice assistant platforms with displays were selected for implementation and testing, namely, the Amazon Echo Show and the Lenovo Smart Display with Google Assistant.by Shradha ShaliniIncludes bibliographical reference

    A contribution to the incorporation of sociability and creativity skills to computers and robots

    Get PDF
    This dissertation contains the research and work completed by the PhD candidate on the incorporation of sociability and creativity skills to computers and robots. Both skills can be directly related with empathy, which is the ability to understand and share the feelings of another. In this form, this research can be contextualized in the framework of recent developments towards the achievement of empathy machines. The first challenge at hands refers to designing pioneering techniques based on the use of social robots to improve user experience interacting with them. In particular, research focus is on eliminating or minimizing pain and anxiety as well as loneliness and stress of long-term hospitalized child patients. This challenge is approached by developing a cloud-based robotics architecture to effectively develop complex tasks related to hospitalized children assistance. More specifically, a multiagent learning system is introduced based on a combination of machine learning and cloud computing using low-cost robots (Innvo labs's Pleo rb). Moreover, a wireless communication system is also developed for the Pleo robot in order to help the health professional who conducts therapy with the child, monitoring, understanding, and controlling Pleo behavior at any moment. As a second challenge, a new formulation of the concept of creativity is proposed in order to empower computers with. Based on previous well established theories from Boden and Wiggins, this thesis redefines the formal mechanism of exploratory and transformational creativity in a way which facilitates the computational implementation of these mechanisms in Creativity Support Systems. The proposed formalization is applied and validated on two real cases: the first, about chocolate designing, in which a novel and flavorful combination of chocolate and fruit is generated. The second case is about the composition of a single voice tune of reel using ABC notation.Postprint (published version
    • …
    corecore