18,074 research outputs found

    Mobile Quantification and Therapy Course Tracking for Gait Rehabilitation

    Full text link
    This paper presents a novel autonomous quality metric to quantify the rehabilitations progress of subjects with knee/hip operations. The presented method supports digital analysis of human gait patterns using smartphones. The algorithm related to the autonomous metric utilizes calibrated acceleration, gyroscope and magnetometer signals from seven Inertial Measurement Unit attached on the lower body in order to classify and generate the grading system values. The developed Android application connects the seven Inertial Measurement Units via Bluetooth and performs the data acquisition and processing in real-time. In total nine features per acceleration direction and lower body joint angle are calculated and extracted in real-time to achieve a fast feedback to the user. We compare the classification accuracy and quantification capabilities of Linear Discriminant Analysis, Principal Component Analysis and Naive Bayes algorithms. The presented system is able to classify patients and control subjects with an accuracy of up to 100\%. The outcomes can be saved on the device or transmitted to treating physicians for later control of the subject's improvements and the efficiency of physiotherapy treatments in motor rehabilitation. The proposed autonomous quality metric solution bears great potential to be used and deployed to support digital healthcare and therapy.Comment: 5 Page

    Smart hospital emergency system via mobile-based requesting services

    Get PDF
    In recent years, the UK’s emergency call and response has shown elements of great strain as of today. The strain on emergency call systems estimated by a 9 million calls (including both landline and mobile) made in 2014 alone. Coupled with an increasing population and cuts in government funding, this has resulted in lower percentages of emergency response vehicles at hand and longer response times. In this paper, we highlight the main challenges of emergency services and overview of previous solutions. In addition, we propose a new system call Smart Hospital Emergency System (SHES). The main aim of SHES is to save lives through improving communications between patient and emergency services. Utilising the latest of technologies and algorithms within SHES is aiming to increase emergency communication throughput, while reducing emergency call systems issues and making the process of emergency response more efficient. Utilising health data held within a personal smartphone, and internal tracked data (GPU, Accelerometer, Gyroscope etc.), SHES aims to process the mentioned data efficiently, and securely, through automatic communications with emergency services, ultimately reducing communication bottlenecks. Live video-streaming through real-time video communication protocols is also a focus of SHES to improve initial communications between emergency services and patients. A prototype of this system has been developed. The system has been evaluated by a preliminary usability, reliability, and communication performance study

    Development of Wearable Systems for Ubiquitous Healthcare Service Provisioning

    Get PDF
    This paper reports on the development of a wearable system using wireless biomedical sensors for ubiquitous healthcare service provisioning. The prototype system is developed to address current healthcare challenges such as increasing cost of services, inability to access diverse services, low quality services and increasing population of elderly as experienced globally. The biomedical sensors proactively collect physiological data of remote patients to recommend diagnostic services. The prototype system is designed to monitor oxygen saturation level (SpO2), Heart Rate (HR), activity and location of the elderly. Physiological data collected are uploaded to a Health Server (HS) via GPRS/Internet for analysis.Comment: 6 pages, 3 figures, APCBEE Procedia 7, 2013. arXiv admin note: substantial text overlap with arXiv:1309.154

    IoMT-Blockchain based Secured Remote Patient Monitoring Framework for Neuro-Stimulation Device

    Full text link
    Biomedical Engineering's Internet of Medical Things (IoMT) is helping to improve the accuracy, dependability, and productivity of electronic equipment in the healthcare business. Real-time sensory data from patients may be delivered and subsequently analyzed through rapid development of wearable IoMT devices, such as neuro-stimulation devices with a range of functions. Data from the Internet of Things is gathered, analyzed, and stored in a single location. However, single-point failure, data manipulation, privacy difficulties, and other challenges might arise as a result of centralization. Due to its decentralized nature, blockchain (BC) can alleviate these issues. The viability of establishing a non-invasive remote neurostimulation system employing IoMT-based transcranial Direct Current Stimulation is investigated in this work (tDCS). A hardware-based prototype tDCS device has been developed that can be operated over the internet using an android application. Our suggested framework addresses the problems of IoMTBC-based systems, meets the criteria of real-time remote patient monitoring systems, and incorporates literature best practices in the relevant fields.Comment: 8 Figures and 2 Table

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe
    • …
    corecore