414 research outputs found

    Deformable face ensemble alignment with robust grouped-L1 anchors

    Get PDF
    Many methods exist at the moment for deformable face fitting. A drawback to nearly all these approaches is that they are (i) noisy in terms of landmark positions, and (ii) the noise is biased across frames (i.e. the misalignment is toward common directions across all frames). In this paper we propose a grouped L1\mathcal{L}1-norm anchored method for simultaneously aligning an ensemble of deformable face images stemming from the same subject, given noisy heterogeneous landmark estimates. Impressive alignment performance improvement and refinement is obtained using very weak initialization as "anchors"

    Sign-correlation partition based on global supervised descent method for face alignment

    Get PDF
    Face alignment is an essential task for facial performance capture and expression analysis. As a complex nonlinear problem in computer vision, face alignment across poses is still not studied well. Although the state-of-the-art Supervised Descent Method (SDM) has shown good performance, it learns conflict descent direction in the whole complex space due to various poses and expressions. Global SDM has been presented to deal with this case by domain partition in feature and shape PCA spaces for face tracking and pose estimation. However, it is not suitable for the face alignment problem due to unknown ground truth shapes. In this paper we propose a sign-correlation subspace method for the domain partition of global SDM. In our method only one reduced low dimensional subspace is enough for domain partition, thus adjusting the global SDM efficiently for face alignment. Unlike previous methods, we analyze the sign correlation between features and shapes, and project both of them into a mutual sign-correlation subspace. Each pair of projected shape and feature keep sign consistent in each dimension of the subspace, so that each hyperoctant holds the condition that one general descent exists. Then a set of general descent directions are learned from the samples in different hyperoctants. Our sign-correlation partition method is validated in the public face datasets, which includes a range of poses. It indicates that our methods can reveal their latent relationships to poses. The comparison with state-of-the-art methods for face alignment demonstrates that our method outperforms them especially in uncontrolled conditions with various poses, while keeping comparable speed

    PD2T: Person-specific Detection, Deformable Tracking

    Get PDF
    Face detection/alignment has reached a satisfactory state in static images captured under arbitrary conditions. Such methods typically perform (joint) fitting independently for each frame and are used in commercial applications; however in the majority of the real-world scenarios the dynamic scenes are of interest. Hence, we argue that generic fitting per frame is suboptimal (it discards the informative correlation of sequential frames) and propose to learn person-specific statistics from the video to improve the generic results. To that end, we introduce a meticulously studied pipeline, which we name PD\textsuperscript{2}T, that performs person-specific detection and landmark localisation. We carry out extensive experimentation with a diverse set of i) generic fitting results, ii) different objects (human faces, animal faces) that illustrate the powerful properties of our proposed pipeline and experimentally verify that PD\textsuperscript{2}T outperforms all the compared methods

    Learning Neural Parametric Head Models

    Get PDF
    We propose a novel 3D morphable model for complete human heads based on hybrid neural fields. At the core of our model lies a neural parametric representation that disentangles identity and expressions in disjoint latent spaces. To this end, we capture a person's identity in a canonical space as a signed distance field (SDF), and model facial expressions with a neural deformation field. In addition, our representation achieves high-fidelity local detail by introducing an ensemble of local fields centered around facial anchor points. To facilitate generalization, we train our model on a newly-captured dataset of over 3700 head scans from 203 different identities using a custom high-end 3D scanning setup. Our dataset significantly exceeds comparable existing datasets, both with respect to quality and completeness of geometry, averaging around 3.5M mesh faces per scan 1 1 We will publicly release our dataset along with a public benchmark for both neural head avatar construction as well as an evaluation on a hidden test-set for inference-time fitting.. Finally, we demonstrate that our approach outperforms state-of-the-art methods in terms of fitting error and reconstruction quality

    Video and Image Super-Resolution via Deep Learning with Attention Mechanism

    Get PDF
    Image demosaicing, image super-resolution and video super-resolution are three important tasks in color imaging pipeline. Demosaicing deals with the recovery of missing color information and generation of full-resolution color images from so-called Color filter Array (CFA) such as Bayer pattern. Image super-resolution aims at increasing the spatial resolution and enhance important structures (e.g., edges and textures) in super-resolved images. Both spatial and temporal dependency are important to the task of video super-resolution, which has received increasingly more attention in recent years. Traditional solutions to these three low-level vision tasks lack generalization capability especially for real-world data. Recently, deep learning methods have achieved great success in vision problems including image demosaicing and image/video super-resolution. Conceptually similar to adaptation in model-based approaches, attention has received increasing more usage in deep learning recently. As a tool to reallocate limited computational resources based on the importance of informative components, attention mechanism which includes channel attention, spatial attention, non-local attention, etc. has found successful applications in both highlevel and low-level vision tasks. However, to the best of our knowledge, 1) most approaches independently studied super-resolution and demosaicing; little is known about the potential benefit of formulating a joint demosaicing and super-resolution (JDSR) problem; 2) attention mechanism has not been studied for spectral channels of color images in the open literature; 3) current approaches for video super-resolution implement deformable convolution based frame alignment methods and naive spatial attention mechanism. How to exploit attention mechanism in spectral and temporal domains sets up the stage for the research in this dissertation. In this dissertation, we conduct a systematic study about those two issues and make the following contributions: 1) we propose a spatial color attention network (SCAN) designed to jointly exploit the spatial and spectral dependency within color images for single image super-resolution (SISR) problem. We present a spatial color attention module that calibrates important color information for individual color components from output feature maps of residual groups. Experimental results have shown that SCAN has achieved superior performance in terms of both subjective and objective qualities on the NTIRE2019 dataset; 2) we propose two competing end-to-end joint optimization solutions to the JDSR problem: Densely-Connected Squeeze-and-Excitation Residual Network (DSERN) vs. Residual-Dense Squeeze-and-Excitation Network (RDSEN). Experimental results have shown that an enhanced design RDSEN can significantly improve both subjective and objective performance over DSERN; 3) we propose a novel deep learning based framework, Deformable Kernel Spatial Attention Network (DKSAN) to super-resolve videos with a scale factor as large as 16 (the extreme SR situation). Thanks to newly designed Deformable Kernel Convolution Alignment (DKC Align) and Deformable Kernel Spatial Attention (DKSA) modules, DKSAN can get both better subjective and objective results when compared with the existing state-of-the-art approach enhanced deformable convolutional network (EDVR)

    Development of an Atlas-Based Segmentation of Cranial Nerves Using Shape-Aware Discrete Deformable Models for Neurosurgical Planning and Simulation

    Get PDF
    Twelve pairs of cranial nerves arise from the brain or brainstem and control our sensory functions such as vision, hearing, smell and taste as well as several motor functions to the head and neck including facial expressions and eye movement. Often, these cranial nerves are difficult to detect in MRI data, and thus represent problems in neurosurgery planning and simulation, due to their thin anatomical structure, in the face of low imaging resolution as well as image artifacts. As a result, they may be at risk in neurosurgical procedures around the skull base, which might have dire consequences such as the loss of eyesight or hearing and facial paralysis. Consequently, it is of great importance to clearly delineate cranial nerves in medical images for avoidance in the planning of neurosurgical procedures and for targeting in the treatment of cranial nerve disorders. In this research, we propose to develop a digital atlas methodology that will be used to segment the cranial nerves from patient image data. The atlas will be created from high-resolution MRI data based on a discrete deformable contour model called 1-Simplex mesh. Each of the cranial nerves will be modeled using its centerline and radius information where the centerline is estimated in a semi-automatic approach by finding a shortest path between two user-defined end points. The cranial nerve atlas is then made more robust by integrating a Statistical Shape Model so that the atlas can identify and segment nerves from images characterized by artifacts or low resolution. To the best of our knowledge, no such digital atlas methodology exists for segmenting nerves cranial nerves from MRI data. Therefore, our proposed system has important benefits to the neurosurgical community
    corecore