1,974 research outputs found

    Single Antenna Anchor-Free UWB Positioning based on Multipath Propagation

    Get PDF
    Radio based localization and tracking usually require multiple receivers/transmitters or a known floor plan. This paper presents a method for anchor free indoor positioning based on single antenna ultra wideband (UWB) measurements. By using time of arrival information from multipath propagation components stemming from scatterers with different, but unknown, positions we estimate the movement of the receiver as well as the angle of arrival of the considered multipath components. Experiments are shown for real indoor data measured in a lecture room with promising results. Simultaneous estimation of both receiver motion, transmitter and scatterer positions is performed using an factorization based approach followed by non-linear least squares optimization. A RANSAC approach to automatic matching of data has also been implemented and tested. The resulting reconstruction is compared to ground truth motion as given by the antenna positioner. The resulting accuracy is in the order of one cm

    Joint received signal strength, angle-of-arrival, and time-of-flight positioning

    Get PDF
    This paper presents a software positioning framework that is able to jointly use measured values of three parameters: the received signal strength, the angle-of-arrival, and the time-of-flight of the wireless signals. Based on experimentally determined measurement accuracies of these three parameters, results of a realistic simulation scenario are presented. It is shown that for the given configuration, angle-of-arrival and received signal strength measurements benefit from a hybrid system that combines both. Thanks to their higher accuracy, time-of-flight systems perform significantly better, and obtain less added value from a combination with the other two parameters

    Robust Near-Field 3D Localization of an Unaligned Single-Coil Agent Using Unobtrusive Anchors

    Full text link
    The magnetic near-field provides a suitable means for indoor localization, due to its insensitivity to the environment and strong spatial gradients. We consider indoor localization setups consisting of flat coils, allowing for convenient integration of the agent coil into a mobile device (e.g., a smart phone or wristband) and flush mounting of the anchor coils to walls. In order to study such setups systematically, we first express the Cram\'er-Rao lower bound (CRLB) on the position error for unknown orientation and evaluate its distribution within a square room of variable size, using 15 x 10cm anchor coils and a commercial NFC antenna at the agent. Thereby, we find cm-accuracy being achievable in a room of 10 x 10 x 3 meters with 12 flat wall-mounted anchors and with 10mW used for the generation of magnetic fields. Practically achieving such estimation performance is, however, difficult because of the non-convex 5D likelihood function. To that end, we propose a fast and accurate weighted least squares (WLS) algorithm which is insensitive to initialization. This is enabled by effectively eliminating the orientation nuisance parameter in a rigorous fashion and scaling the individual anchor observations, leading to a smoothed 3D cost function. Using WLS estimates to initialize a maximum-likelihood (ML) solver yields accuracy near the theoretical limit in up to 98% of cases, thus enabling robust indoor localization with unobtrusive infrastructure, with a computational efficiency suitable for real-time processing.Comment: 7 pages, to be presented at IEEE PIMRC 201

    Advanced real-time indoor tracking based on the Viterbi algorithm and semantic data

    Get PDF
    A real-time indoor tracking system based on the Viterbi algorithm is developed. This Viterbi principle is used in combination with semantic data to improve the accuracy, that is, the environment of the object that is being tracked and a motion model. The starting point is a fingerprinting technique for which an advanced network planner is used to automatically construct the radio map, avoiding a time consuming measurement campaign. The developed algorithm was verified with simulations and with experiments in a building-wide testbed for sensor experiments, where a median accuracy below 2 m was obtained. Compared to a reference algorithm without Viterbi or semantic data, the results indicated a significant improvement: the mean accuracy and standard deviation improved by, respectively, 26.1% and 65.3%. Thereafter a sensitivity analysis was conducted to estimate the influence of node density, grid size, memory usage, and semantic data on the performance

    Massive MIMO-based Localization and Mapping Exploiting Phase Information of Multipath Components

    Get PDF
    In this paper, we present a robust multipath-based localization and mapping framework that exploits the phases of specular multipath components (MPCs) using a massive multiple-input multiple-output (MIMO) array at the base station. Utilizing the phase information related to the propagation distances of the MPCs enables the possibility of localization with extraordinary accuracy even with limited bandwidth. The specular MPC parameters along with the parameters of the noise and the dense multipath component (DMC) are tracked using an extended Kalman filter (EKF), which enables to preserve the distance-related phase changes of the MPC complex amplitudes. The DMC comprises all non-resolvable MPCs, which occur due to finite measurement aperture. The estimation of the DMC parameters enhances the estimation quality of the specular MPCs and therefore also the quality of localization and mapping. The estimated MPC propagation distances are subsequently used as input to a distance-based localization and mapping algorithm. This algorithm does not need prior knowledge about the surrounding environment and base station position. The performance is demonstrated with real radio-channel measurements using an antenna array with 128 ports at the base station side and a standard cellular signal bandwidth of 40 MHz. The results show that high accuracy localization is possible even with such a low bandwidth.Comment: 14 pages (two columns), 13 figures. This work has been submitted to the IEEE Transaction on Wireless Communications for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging

    Full text link
    The implementation challenges of cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging are discussed and work on the subject is reviewed. System architecture and sensor fusion are identified as key challenges. A partially decentralized system architecture based on step-wise inertial navigation and step-wise dead reckoning is presented. This architecture is argued to reduce the computational cost and required communication bandwidth by around two orders of magnitude while only giving negligible information loss in comparison with a naive centralized implementation. This makes a joint global state estimation feasible for up to a platoon-sized group of agents. Furthermore, robust and low-cost sensor fusion for the considered setup, based on state space transformation and marginalization, is presented. The transformation and marginalization are used to give the necessary flexibility for presented sampling based updates for the inter-agent ranging and ranging free fusion of the two feet of an individual agent. Finally, characteristics of the suggested implementation are demonstrated with simulations and a real-time system implementation.Comment: 14 page

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter
    • …
    corecore