85,184 research outputs found

    Anchor Free IP Mobility

    Get PDF
    Efficient mobility management techniques are critical in providing seamless connectivity and session continuity between a mobile node and the network during its movement. However, current mobility management solutions generally require a central entity in the network core, tracking IP address movement, and anchoring traffic from source to destination through point-to-point tunnels. Intuitively, this approach suffers from scalability limitations as it creates bottlenecks in the network, due to sub-optimal routing via the anchor point. This is often termed 'dog-leg' routing. Meanwhile, alternative anchorless, solutions are not feasible due to the current limitations of the IP semantics, which strongly tie addressing information to location. In contrast, this paper introduces a novel anchorless mobility solution that overcomes these limitations by exploiting a new path-based forwarding fabric together with emerging mechanisms from information-centric networking. These mechanisms decouple the end-system IP address from the path based data forwarding to eliminate the need for anchoring traffic through the network core; thereby, allowing flexible path calculation and service provisioning. Furthermore, by eliminating the limitation of routing via the anchor point, our approach reduces the network cost compared to anchored solutions through bandwidth saving while maintaining comparable handover delay. The proposed solution is applicable to both cellular and large-scale wireless LAN networks that aim to support seamless handover in a single operator domain scenario. The solution is modeled as a Markov-chain which applies a topological basis to describe mobility. The validity of the proposed Markovian model was verified through simulation of both random walk mobility on random geometric networks and trace information from a large-scale, city wide data set. Evaluation results illustrate a significant reduction in the total network traffic cost by 45 percent or more when using the proposed solution, compared to Proxy Mobile IPv6

    Improvement of range-free localization technology by a novel DV-hop protocol in wireless sensor networks

    Get PDF
    International audienceLocalization is a fundamental issue for many applications in wireless sensor networks. Without the need of additional ranging devices, the range-free localization technology is a cost-effective solution for low-cost indoor and outdoor wireless sensor networks. Among range-free algorithms, DV-hop (Distance Vector - hop) has the advantage to localize the mobile nodes which has less than three neighbour anchors. Based on the original DV-hop algorithm, this paper presents two improved algorithms (Checkout DV-hop and Selective 3-Anchor DV-hop). Checkout DV-hop algorithm estimates the mobile node position by using the nearest anchor, while Selective 3-Anchor DV-hop algorithm chooses the best 3 anchors to improve localization accuracy. Then, in order to implement these DV-hop based algorithms in network scenarios, a novel DV-hop localization protocol is proposed. This new protocol is presented in detail in this paper, including the format of data payloads, the improved collision reduction method E-CSMA/CA, as well as parameters used in deciding the end of each DV-hop step. Finally, using our localization protocol, we investigate the performance of typical DV-hop based algorithms in terms of localization accuracy, mobility, synchronization and overhead. Simulation results prove that Selective 3-Anchor DV-hop algorithm offers the best performance compared to Checkout DV-hop and the original DV-hop algorithm

    Dead Reckoning Localization Technique for Mobile Wireless Sensor Networks

    Full text link
    Localization in wireless sensor networks not only provides a node with its geographical location but also a basic requirement for other applications such as geographical routing. Although a rich literature is available for localization in static WSN, not enough work is done for mobile WSNs, owing to the complexity due to node mobility. Most of the existing techniques for localization in mobile WSNs uses Monte-Carlo localization, which is not only time-consuming but also memory intensive. They, consider either the unknown nodes or anchor nodes to be static. In this paper, we propose a technique called Dead Reckoning Localization for mobile WSNs. In the proposed technique all nodes (unknown nodes as well as anchor nodes) are mobile. Localization in DRLMSN is done at discrete time intervals called checkpoints. Unknown nodes are localized for the first time using three anchor nodes. For their subsequent localizations, only two anchor nodes are used. The proposed technique estimates two possible locations of a node Using Bezouts theorem. A dead reckoning approach is used to select one of the two estimated locations. We have evaluated DRLMSN through simulation using Castalia simulator, and is compared with a similar technique called RSS-MCL proposed by Wang and Zhu .Comment: Journal Paper, IET Wireless Sensor Systems, 201

    An Assessment on the Use of Stationary Vehicles as a Support to Cooperative Positioning

    Get PDF
    In this paper, we consider the use of stationary vehicles as tools to enhance the localisation capabilities of moving vehicles in a VANET. We examine the idea in terms of its potential benefits, technical requirements, algorithmic design and experimental evaluation. Simulation results are given to illustrate the efficacy of the technique.Comment: This version of the paper is an updated version of the initial submission, where some initial comments of reviewers have been taken into accoun

    Imagined mobilities and the materiality of migration: the search for 'anchored lives' in post-recession Europe

    Get PDF
    The dichotomy between mobility and migration became a disputed conceptual distinction during the expansion of European Free Movement between the 1990s and early 2000s. Then, mobility literature sought to open a new chapter in the study of contemporary human lives by theorising them as ‘liquid' and suggesting movement as their universalising feature. Intra-European migrants have been increasingly characterised by their ‘mobility spirit' and therefore as legally unconstrained, driven by individualised behaviours and engaged in temporary cross-border movements. Set in the backdrop of post-recession intra-European migration, this paper explores how migrants’ mobility spirit is being negotiated with the need to anchor their lives to stable relationships and to the attainment of financial security. It draws on interviews conducted with Italian young adults in London and shows how imagined projects of temporary mobility materialize into longer-term migration experiences where the search for anchored rather than liquid lives becomes more prominent. Henceforth, the analysis challenges the typified profile of EU movers by pointing at their quest for social and financial stability and by exposing their personal vulnerabilities while making the theoretical distinction between migration and mobility less relevant

    Axel: A Minimalist Tethered Rover for Exploration of Extreme Planetary Terrains

    Get PDF
    Recent scientific findings suggest that some of the most interesting sites for future exploration of planetary surfaces lie in terrains that are currently inaccessible to conventional robotic rovers. To provide robust and flexible access to these terrains, we have been developing Axel, the robotic rover. Axel is a lightweight two-wheeled vehicle that can access steep terrains and negotiate relatively large obstacles because of its actively managed tether and novel wheel design. This article reviews the Axel system and focuses on those system components that affect Axel's steep terrain mobility. Experimental demonstrations of Axel on sloped and rocky terrains are presented
    • …
    corecore