1,087 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Transmission Power Adjustment Scheme for Mobile Beacon-Assisted Sensor Localization

    Full text link
    © 2005-2012 IEEE. Localization, as a crucial service for sensor networks, is an energy-demanding process for both indoor and outdoor scenarios. GPS-based localization schemes are infeasible in remote, indoor areas, and it is not a cost-effective solution for large-scale networks. Single mobile-beacon architecture is recently considered to localize sensor networks with the aim of removing numerous GPS-equipped nodes. The critical issue for the mobile beacon-Assisted localization is to preserve the consumed power to increase the lifetime. This paper presents a novel power control scheme, namely 'Z-power,' for mobile beacon traveling along a predefined path. The proposed scheme takes the advantage of deterministic path traveled by the single beacon to efficiently adjust the transmission power. Based on the extensive results, the proposed power control scheme could successfully improve the beacon and sensors energy consumption about 25.37% and 34.09%, respectively. A significant energy-Accuracy tradeoff was achieved using Z-power, which could successfully keep the same level of accuracy while providing lower energy consumption. Another group of results collected when obstacle-handling algorithm was applied at the presence of obstacles. In this scenario, Z-power improves energy consumption and localization accuracy with the same level of success

    Localization Of Sensors In Presence Of Fading And Mobility

    Get PDF
    The objective of this dissertation is to estimate the location of a sensor through analysis of signal strengths of messages received from a collection of mobile anchors. In particular, a sensor node determines its location from distance measurements to mobile anchors of known locations. We take into account the uncertainty and fluctuation of the RSS as a result of fading and take into account the decay of the RSS which is proportional to the transmitter-receiver distance power raised to the PLE. The objective is to characterize the channel in order to derive accurate distance estimates from RSS measurements and then utilize the distance estimates in locating the sensors. To characterize the channel, two techniques are presented for the mobile anchors to periodically estimate the channel\u27s PLE and fading parameter. Both techniques estimate the PLE by solving an equation via successive approximations. The formula in the first is stated directly from MLE analysis whereas in the second is derived from a simple probability analysis. Then two distance estimates are proposed, one based on a derived formula and the other based on the MLE analysis. Then a location technique is proposed where two anchors are sufficient to uniquely locate a sensor. That is, the sensor narrows down its possible locations to two when collects RSS measurements transmitted by a mobile anchor, then uniquely determines its location when given a distance to the second anchor. Analysis shows the PLE has no effect on the accuracy of the channel characterization, the normalized error in the distance estimation is invariant to the estimated distance, and accurate location estimates can be achieved from a moderate sample of RSS measurements

    A Review of Radio Frequency Based Localization for Aerial and Ground Robots with 5G Future Perspectives

    Full text link
    Efficient localization plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned aerial vehicles (UAVs), which would contribute to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities for enhancing localization of UAVs and UGVs. In this paper, we review the radio frequency (RF) based approaches for localization. We review the RF features that can be utilized for localization and investigate the current methods suitable for Unmanned vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localization for both UAVs and UGVs is examined, and the envisioned 5G NR for localization enhancement, and the future research direction are explored

    Range-only SLAM schemes exploiting robot-sensor network cooperation

    Get PDF
    Simultaneous localization and mapping (SLAM) is a key problem in robotics. A robot with no previous knowledge of the environment builds a map of this environment and localizes itself in that map. Range-only SLAM is a particularization of the SLAM problem which only uses the information provided by range sensors. This PhD Thesis describes the design, integration, evaluation and validation of a set of schemes for accurate and e_cient range-only simultaneous localization and mapping exploiting the cooperation between robots and sensor networks. This PhD Thesis proposes a general architecture for range-only simultaneous localization and mapping (RO-SLAM) with cooperation between robots and sensor networks. The adopted architecture has two main characteristics. First, it exploits the sensing, computational and communication capabilities of sensor network nodes. Both, the robot and the beacons actively participate in the execution of the RO-SLAM _lter. Second, it integrates not only robot-beacon measurements but also range measurements between two di_erent beacons, the so-called inter-beacon measurements. Most reported RO-SLAM methods are executed in a centralized manner in the robot. In these methods all tasks in RO-SLAM are executed in the robot, including measurement gathering, integration of measurements in RO-SLAM and the Prediction stage. These fully centralized RO-SLAM methods require high computational burden in the robot and have very poor scalability. This PhD Thesis proposes three di_erent schemes that works under the aforementioned architecture. These schemes exploit the advantages of cooperation between robots and sensor networks and intend to minimize the drawbacks of this cooperation. The _rst scheme proposed in this PhD Thesis is a RO-SLAM scheme with dynamically con_gurable measurement gathering. Integrating inter-beacon measurements in RO-SLAM signi_cantly improves map estimation but involves high consumption of resources, such as the energy required to gather and transmit measurements, the bandwidth required by the measurement collection protocol and the computational burden necessary to integrate the larger number of measurements. The objective of this scheme is to reduce the increment in resource consumption resulting from the integration of inter-beacon measurements by adopting a centralized mechanism running in the robot that adapts measurement gathering. The second scheme of this PhD Thesis consists in a distributed RO-SLAM scheme based on the Sparse Extended Information Filter (SEIF). This scheme reduces the increment in resource consumption resulting from the integration of inter-beacon measurements by adopting a distributed SLAM _lter in which each beacon is responsible for gathering its measurements to the robot and to other beacons and computing the SLAM Update stage in order to integrate its measurements in SLAM. Moreover, it inherits the scalability of the SEIF. The third scheme of this PhD Thesis is a resource-constrained RO-SLAM scheme based on the distributed SEIF previously presented. This scheme includes the two mechanisms developed in the previous contributions {measurement gathering control and distribution of RO-SLAM Update stage between beacons{ in order to reduce the increment in resource consumption resulting from the integration of inter-beacon measurements. This scheme exploits robot-beacon cooperation to improve SLAM accuracy and e_ciency while meeting a given resource consumption bound. The resource consumption bound is expressed in terms of the maximum number of measurements that can be integrated in SLAM per iteration. The sensing channel capacity used, the beacon energy consumed or the computational capacity employed, among others, are proportional to the number of measurements that are gathered and integrated in SLAM. The performance of the proposed schemes have been analyzed and compared with each other and with existing works. The proposed schemes are validated in real experiments with aerial robots. This PhD Thesis proves that the cooperation between robots and sensor networks provides many advantages to solve the RO-SLAM problem. Resource consumption is an important constraint in sensor networks. The proposed architecture allows the exploitation of the cooperation advantages. On the other hand, the proposed schemes give solutions to the resource limitation without degrading performance

    Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    Get PDF
    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted

    An accurate RSS/AoA-based localization method for internet of underwater things

    Get PDF
    Localization is an important issue for Internet of Underwater Things (IoUT) since the performance of a large number of underwater applications highly relies on the position information of underwater sensors. In this paper, we propose a hybrid localization approach based on angle-of-arrival (AoA) and received signal strength (RSS) for IoUT. We consider a smart fishing scenario in which using the proposed approach fishers can find fishes’ locations effectively. The proposed method collects the RSS observation and estimates the AoA based on error variance. To have a more realistic deployment, we assume that the perfect noise information is not available. Thus, a minimax approach is provided in order to optimize the worst-case performance and enhance the estimation accuracy under the unknown parameters. Furthermore, we analyze the mismatch of the proposed estimator using mean-square error (MSE). We then develop semidefinite programming (SDP) based method which relaxes the non-convex constraints into the convex constraints to solve the localization problem in an efficient way. Finally, the Cramer–Rao lower bounds (CRLBs) are derived to bound the performance of the RSS-based estimator. In comparison with other localization schemes, the proposed method increases localization accuracy by more than 13%. Our method can localize 96% of sensor nodes with less than 5% positioning error when there exist 25% anchors

    Indoor navigation systems based on data mining techniques in internet of things: a survey

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Internet of Things (IoT) is turning into an essential part of daily life, and numerous IoT-based scenarios will be seen in future of modern cities ranging from small indoor situations to huge outdoor environments. In this era, navigation continues to be a crucial element in both outdoor and indoor environments, and many solutions have been provided in both cases. On the other side, recent smart objects have produced a substantial amount of various data which demands sophisticated data mining solutions to cope with them. This paper presents a detailed review of previous studies on using data mining techniques in indoor navigation systems for the loT scenarios. We aim to understand what type of navigation problems exist in different IoT scenarios with a focus on indoor environments and later on we investigate how data mining solutions can provide solutions on those challenges
    • …
    corecore