1,447 research outputs found

    Intensity Based Non-rigid Registration of 3D Whole Mouse Optical and MR Image Volumes

    Get PDF
    Novel magnetic resonance (MR) imaging techniques can be validated using accurate co-registration with histology. Whole-animal histological sections allow for simultaneous analysis of multiple tissues, and may also aid in registration by providing contextual information and structural support to tissues which if isolated from the body would be difficult to register. This thesis explores the feasibility of co-registration between whole mouse histology with 3D MR images using an intermediate optical image volume acquired during tissue sectioning. Of the two transformations required for this approach, 3D co-registration of MR and optical images is more challenging to perform due to changes in contrast, slice orientation, and resolution between these modalities. Here, an automated non-rigid registration technique utilizing mutual information is proposed to accurately register 3D whole mouse optical and MR images as a first step towards automated registration of histology. Validation of this technique was accomplished through calculation of post-registration target registration error

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Automated analysis and visualization of preclinical whole-body microCT data

    Get PDF
    In this thesis, several strategies are presented that aim to facilitate the analysis and visualization of whole-body in vivo data of small animals. Based on the particular challenges for image processing, when dealing with whole-body follow-up data, we addressed several aspects in this thesis. The developed methods are tailored to handle data of subjects with significantly varying posture and address the large tissue heterogeneity of entire animals. In addition, we aim to compensate for lacking tissue contrast by relying on approximation of organs based on an animal atlas. Beyond that, we provide a solution to automate the combination of multimodality, multidimensional data.* Advanced School for Computing and Imaging (ASCI), Delft, NL * Bontius Stichting inz Doelfonds Beeldverwerking, Leiden, NL * Caliper Life Sciences, Hopkinton, USA * Foundation Imago, Oegstgeest, NLUBL - phd migration 201

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie

    PET/MR imaging of hypoxic atherosclerotic plaque using 64Cu-ATSM

    Get PDF
    ABSTRACT OF THE DISSERTATION PET/MR Imaging of Hypoxic Atherosclerotic Plaque Using 64Cu-ATSM by Xingyu Nie Doctor of Philosophy in Biomedical Engineering Washington University in St. Louis, 2017 Professor Pamela K. Woodard, Chair Professor Suzanne Lapi, Co-Chair It is important to accurately identify the factors involved in the progression of atherosclerosis because advanced atherosclerotic lesions are prone to rupture, leading to disability or death. Hypoxic areas have been known to be present in human atherosclerotic lesions, and lesion progression is associated with the formation of lipid-loaded macrophages and increased local inflammation which are potential major factors in the formation of vulnerable plaque. This dissertation work represents a comprehensive investigation of non-invasive identification of hypoxic atherosclerotic plaque in animal models and human subjects using the PET hypoxia imaging agent 64Cu-ATSM. We first demonstrated the feasibility of 64Cu-ATSM for the identification of hypoxic atherosclerotic plaque and evaluated the relative effects of diet and genetics on hypoxia progression in atherosclerotic plaque in a genetically-altered mouse model. We then fully validated the feasibility of using 64Cu-ATSM to image the extent of hypoxia in a rabbit model with atherosclerotic-like plaque using a simultaneous PET-MR system. We also proceeded with a pilot clinical trial to determine whether 64Cu-ATSM MR/PET scanning is capable of detecting hypoxic carotid atherosclerosis in human subjects. In order to improve the 64Cu-ATSM PET image quality, we investigated the Siemens HD (high-definition) PET software and 4 partial volume correction methods to correct for partial volume effects. In addition, we incorporated the attenuation effect of the carotid surface coil into the MR attenuation correction _-map to correct for photon attention. In the long term, this imaging strategy has the potential to help identify patients at risk for cardiovascular events, guide therapy, and add to the understanding of plaque biology in human patients

    Visualization-Based Mapping of Language Function in the Brain

    Get PDF
    Cortical language maps, obtained through intraoperative electrical stimulation studies, provide a rich source of information for research on language organization. Previous studies have shown interesting correlations between the distribution of essential language sites and such behavioral indicators as verbal IQ and have provided suggestive evidence for regarding human language cortex as an organization of multiple distributed systems. Noninvasive studies using ECoG, PET, and functional MR lend support to this model; however, there as yet are no studies that integrate these two forms of information. In this paper we describe a method for mapping the stimulation data onto a 3-D MRI-based neuroanatomic model of the individual patient. The mapping is done by comparing an intraoperative photograph of the exposed cortical surface with a computer-based MR visualization of the surface, interactively indicating corresponding stimulation sites, and recording 3-D MR machine coordinates of the indicated sites. Repeatability studies were performed to validate the accuracy of the mapping technique. Six observers—a neurosurgeon, a radiologist, and four computer scientists, independently mapped 218 stimulation sites from 12 patients. The mean distance of a mapping from the mean location of each site was 2.07 mm, with a standard deviation of 1.5 mm, or within 5.07 mm with 95% confidence. Since the surgical sites are accurate within approximately 1 cm, these results show that the visualization-based approach is accurate within the limits of the stimulation maps. When incorporated within the kind of information system envisioned by the Human Brain Project, this anatomically based method will not only provide a key link between noninvasive and invasive approaches to understanding language organization, but will also provide the basis for studying the relationship between language function and anatomical variability

    Post-Acquisition Hyperpolarized 29Silicon MR Image Processing for Visualization of Colorectal Lesions Using a User-Friendly Graphical Interface

    Get PDF
    Medical imaging devices often use automated processing that creates and displays a self-normalized image. When improperly executed, normalization can misrepresent information or result in an inaccurate analysis. In the case of diagnostic imaging, a false positive in the absence of disease, or a negative finding when disease is present, can produce a detrimental experience for the patient and diminish their health prospects and prognosis. In many clinical settings, a medical technical specialist is trained to operate an imaging device without sufficient background information or understanding of the fundamental theory and processes involved in image creation and signal processing. Here, we describe a user-friendly image processing algorithm that mitigates user bias and allows for true signal to be distinguished from background. For proof-of-principle, we used antibody-targeted molecular imaging of colorectal cancer (CRC) in a mouse model, expressing human MUC1 at tumor sites. Lesion detection was performed using targeted magnetic resonance imaging (MRI) of hyperpolarized silicon particles. Resulting images containing high background and artifacts were then subjected to individualized image post-processing and comparative analysis. Post-acquisition image processing allowed for co-registration of the targeted silicon signal with the anatomical proton magnetic resonance (MR) image. This new methodology allows users to calibrate a set of images, acquired with MRI, and reliably locate CRC tumors in the lower gastrointestinal tract of living mice. The method is expected to be generally useful for distinguishing true signal from background for other cancer types, improving the reliability of diagnostic MRI

    Characterization of Brown Adipose Tissue in a Diabetic Mouse Model with Spiral Volumetric Optoacoustic Tomography

    Full text link
    PURPOSE Diabetes is associated with a deterioration of the microvasculature in brown adipose tissue (BAT) and with a decrease in its metabolic activity. Multispectral optoacoustic tomography has been recently proposed as a new tool capable of differentiating healthy and diabetic BAT by observing hemoglobin gradients and microvasculature density in cross-sectional (2D) views. We report on the use of spiral volumetric optoacoustic tomography (SVOT) for an improved characterization of BAT. PROCEDURES A streptozotocin-induced diabetes model and control mice were scanned with SVOT. Volumetric oxygen saturation (sO) as well as total blood volume (TBV) in the subcutaneous interscapular BAT (iBAT) was quantified. Segmentation further enabled separating feeding and draining vessels from the BAT anatomical structure. RESULTS Scanning revealed a 46 % decrease in TBV and a 25 % decrease in sO in the diabetic iBAT with respect to the healthy control. CONCLUSIONS These results suggest that SVOT may serve as an effective tool for studying the effects of diabetes on BAT. The volumetric optoacoustic imaging probe used for the SVOT scans can be operated in a handheld mode, thus potentially providing a clinical translation route for BAT-related studies with this imaging technology
    • …
    corecore