373 research outputs found

    Analysis of airways in computed tomography

    Get PDF

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Quantitative predictions of cerebral arterial labeling employing neural network ensemble orchestrate precise investigation in brain frailty of cerebrovascular disease

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋‡Œ๊ณผํ•™์ „๊ณต, 2023. 2. ๊น€์ƒ์œค์„œ์šฐ๊ทผ(๊ณต๋™์ง€๋„๊ต์ˆ˜).Identifying the cerebral arterial branches is essential for undertaking a computational approach to cerebrovascular imaging. However, the complexity and inter-individual differences involved in this process have not been thoroughly studied. We used machine learning to examine the anatomical profile of the cerebral arterial tree. The method is less sensitive to inter-subject and cohort-wise anatomical variations and exhibits robust performance with an unprecedented in-depth vessel range. We applied machine learning algorithms to disease-free healthy control subjects (n = 42), patients with stroke with intracranial atherosclerosis (ICAS) (n = 46), and patients with stroke mixed with the existing controls (n = 69). We trained and tested 70% and 30% of each study cohort, respectively, incorporating spatial coordinates and geometric vessel feature vectors. Cerebral arterial images were analyzed based on the segmentation-stacking method using magnetic resonance angiography. We precisely classified the cerebral arteries across the exhaustive scope of vessel components using advanced geometric characterization, redefinition of vessel unit conception, and post-processing algorithms. We verified that the neural network ensemble, with multiple joint models as the combined predictor, classified all vessel component types independent of inter-subject variations in cerebral arterial anatomy. The validity of the categorization performance of the model was tested, considering the control, ICAS, and control-blended stroke cohorts, using the area under the receiver operating characteristic (ROC) curve and precision-recall curve. The classification accuracy rarely fell outside each images 90โ€“99% scope, independent of cohort-dependent cerebrovascular structural variations. The classification ensemble was calibrated with high overall area rates under the ROC curve of 0.99โ€“1.00 [0.97โ€“1.00] in the test set across various study cohorts. Identifying an all-inclusive range of vessel components across controls, ICAS, and stroke patients, the accuracy rates of the prediction were: internal carotid arteries, 91โ€“100%; middle cerebral arteries, 82โ€“98%; anterior cerebral arteries, 88โ€“100%; posterior cerebral arteries, 87โ€“100%; and collections of superior, anterior inferior, and posterior inferior cerebellar arteries, 90โ€“99% in the chunk-level classification. Using a voting algorithm on the queued classified vessel factors and anatomically post-processing the automatically classified results intensified quantitative prediction performance. We employed stochastic clustering and deep neural network ensembles. Machine intelligence-assisted prediction of vessel structure allowed us to personalize quantitative predictions of various types of cerebral arterial structures, contributing to precise and efficient decisions regarding cerebrovascular disease.CHAPTER 1. AUTOMATED IN-DEPTH CEREBRAL ARTERIAL LABELING USING CEREBROVASCULAR VASCULATURE REFRAMING AND DEEP NEURAL NETWORKS 8 1.1. INTRODUCTION 8 1.2.1. Study design and subjects 9 1.2.2. Imaging preparation 11 1.2.2.1. Magnetic resonance machine 11 1.2.2.2. Magnetic resonance sequence 11 1.2.2.3. Region growing 11 1.2.2.4. Feature extraction 11 1.2.3. Reframing hierarchical cerebrovasculature 12 1.2.4. Classification method development 14 1.2.4.1. Two-step modeling 14 1.2.4.2. Validation 16 1.2.4.3. Statistics 16 1.2.4.4. Data availability 16 1.3. RESULTS 16 1.3.1. Subject characteristics 16 1.3.2. Vascular component characteristics 21 1.3.3. Testing the appropriateness of the reframed vascular structure 24 1.3.4. Step 1 modeling: chunk 24 1.3.5. Step 2 modeling: branch 26 1.3.6. Vascular morphological features according to the vascular risk factors 31 1.3.7. The profiles of geometric feature vectors weighted on deep neural networks 31 1.4. DISCUSSION 35 1.4.1. The role of neural networks in this study 36 1.4.2. Paradigm-shifting vascular unit reframing 36 1.4.3. Limitations and future directions 37 1.5. CONCLUSIONS 38 1.6. ACKNOWLEDGEMENTS 38 1.7. FUNDING 39 BIBLIOGRAPHY 40์„

    Classifying tree structures using elastic matching of sequence encodings

    Get PDF
    This document is the Accepted Manuscript version of the following article: Angeliki Skoura, Iosif Mporas, Vasileios Megalooikonomou, โ€˜Classifying tree structures using elastic matching of sequence encodingsโ€™, Neurocomputing, Vol. 163, pp. 151-159, February 2015. The Version of Record is available online at: DOI: https://doi.org/10.1016/j.neucom.2014.08.083. This Manuscript version is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.Structures of tree topology are frequently encountered in nature and in a range of scientific domains. In this paper, a multi-step framework is presented to classify tree topologies introducing the idea of elastic matching of their sequence encodings. Initially, representative sequences of the branching topologies are obtained using node labeling and tree traversal schemes. The similarity between tree topologies is then quantified by applying elastic matching techniques. The resulting sequence alignment reveals corresponding node groups providing a better understanding of matching tree topologies. The new similarity approach is explored using various classification algorithms and is applied to a medical dataset outperforming state-of-the-art techniques by at least 6.6% and 3.5% in terms of absolute specificity and accuracy correspondingly.Peer reviewe

    Multi-site, Multi-domain Airway Tree Modeling (ATM'22): A Public Benchmark for Pulmonary Airway Segmentation

    Full text link
    Open international challenges are becoming the de facto standard for assessing computer vision and image analysis algorithms. In recent years, new methods have extended the reach of pulmonary airway segmentation that is closer to the limit of image resolution. Since EXACT'09 pulmonary airway segmentation, limited effort has been directed to quantitative comparison of newly emerged algorithms driven by the maturity of deep learning based approaches and clinical drive for resolving finer details of distal airways for early intervention of pulmonary diseases. Thus far, public annotated datasets are extremely limited, hindering the development of data-driven methods and detailed performance evaluation of new algorithms. To provide a benchmark for the medical imaging community, we organized the Multi-site, Multi-domain Airway Tree Modeling (ATM'22), which was held as an official challenge event during the MICCAI 2022 conference. ATM'22 provides large-scale CT scans with detailed pulmonary airway annotation, including 500 CT scans (300 for training, 50 for validation, and 150 for testing). The dataset was collected from different sites and it further included a portion of noisy COVID-19 CTs with ground-glass opacity and consolidation. Twenty-three teams participated in the entire phase of the challenge and the algorithms for the top ten teams are reviewed in this paper. Quantitative and qualitative results revealed that deep learning models embedded with the topological continuity enhancement achieved superior performance in general. ATM'22 challenge holds as an open-call design, the training data and the gold standard evaluation are available upon successful registration via its homepage.Comment: 32 pages, 16 figures. Homepage: https://atm22.grand-challenge.org/. Submitte

    Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability

    Get PDF
    International audienceComputational anatomy is an emerging discipline at the interface of geometry, statistics and image analysis which aims at modeling and analyzing the biological shape of tissues and organs. The goal is to estimate representative organ anatomies across diseases, populations, species or ages, to model the organ development across time (growth or aging), to establish their variability, and to correlate this variability information with other functional, genetic or structural information. The Mathematical Foundations of Computational Anatomy (MFCA) workshop aims at fostering the interactions between the mathematical community around shapes and the MICCAI community in view of computational anatomy applications. It targets more particularly researchers investigating the combination of statistical and geometrical aspects in the modeling of the variability of biological shapes. The workshop is a forum for the exchange of the theoretical ideas and aims at being a source of inspiration for new methodological developments in computational anatomy. A special emphasis is put on theoretical developments, applications and results being welcomed as illustrations. Following the successful rst edition of this workshop in 20061 and second edition in New-York in 20082, the third edition was held in Toronto on September 22 20113. Contributions were solicited in Riemannian and group theoretical methods, geometric measurements of the anatomy, advanced statistics on deformations and shapes, metrics for computational anatomy, statistics of surfaces, modeling of growth and longitudinal shape changes. 22 submissions were reviewed by three members of the program committee. To guaranty a high level program, 11 papers only were selected for oral presentation in 4 sessions. Two of these sessions regroups classical themes of the workshop: statistics on manifolds and diff eomorphisms for surface or longitudinal registration. One session gathers papers exploring new mathematical structures beyond Riemannian geometry while the last oral session deals with the emerging theme of statistics on graphs and trees. Finally, a poster session of 5 papers addresses more application oriented works on computational anatomy

    Human Treelike Tubular Structure Segmentation: A Comprehensive Review and Future Perspectives

    Get PDF
    Various structures in human physiology follow a treelike morphology, which often expresses complexity at very fine scales. Examples of such structures are intrathoracic airways, retinal blood vessels, and hepatic blood vessels. Large collections of 2D and 3D images have been made available by medical imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), Optical coherence tomography (OCT) and ultrasound in which the spatial arrangement can be observed. Segmentation of these structures in medical imaging is of great importance since the analysis of the structure provides insights into disease diagnosis, treatment planning, and prognosis. Manually labelling extensive data by radiologists is often time-consuming and error-prone. As a result, automated or semi-automated computational models have become a popular research field of medical imaging in the past two decades, and many have been developed to date. In this survey, we aim to provide a comprehensive review of currently publicly available datasets, segmentation algorithms, and evaluation metrics. In addition, current challenges and future research directions are discussed.Comment: 30 pages, 19 figures, submitted to CBM journa

    Advanced deep learning for medical image segmentation:Towards global and data-efficient learning

    Get PDF
    • โ€ฆ
    corecore