875 research outputs found

    Three-Dimensional Dose Prediction for Lung IMRT Patients with Deep Neural Networks: Robust Learning from Heterogeneous Beam Configurations

    Full text link
    The use of neural networks to directly predict three-dimensional dose distributions for automatic planning is becoming popular. However, the existing methods only use patient anatomy as input and assume consistent beam configuration for all patients in the training database. The purpose of this work is to develop a more general model that, in addition to patient anatomy, also considers variable beam configurations, to achieve a more comprehensive automatic planning with a potentially easier clinical implementation, without the need of training specific models for different beam settings

    Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study

    Get PDF
    BACKGROUND: Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain. OBJECTIVE: Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice. METHODS: The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions. RESULTS: We demonstrated the model's clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model's generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training. CONCLUSIONS: Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways

    Automatic Segmentation of Mandible from Conventional Methods to Deep Learning-A Review

    Get PDF
    Medical imaging techniques, such as (cone beam) computed tomography and magnetic resonance imaging, have proven to be a valuable component for oral and maxillofacial surgery (OMFS). Accurate segmentation of the mandible from head and neck (H&N) scans is an important step in order to build a personalized 3D digital mandible model for 3D printing and treatment planning of OMFS. Segmented mandible structures are used to effectively visualize the mandible volumes and to evaluate particular mandible properties quantitatively. However, mandible segmentation is always challenging for both clinicians and researchers, due to complex structures and higher attenuation materials, such as teeth (filling) or metal implants that easily lead to high noise and strong artifacts during scanning. Moreover, the size and shape of the mandible vary to a large extent between individuals. Therefore, mandible segmentation is a tedious and time-consuming task and requires adequate training to be performed properly. With the advancement of computer vision approaches, researchers have developed several algorithms to automatically segment the mandible during the last two decades. The objective of this review was to present the available fully (semi)automatic segmentation methods of the mandible published in different scientific articles. This review provides a vivid description of the scientific advancements to clinicians and researchers in this field to help develop novel automatic methods for clinical applications

    Automatic Segmentation of the Mandible for Three-Dimensional Virtual Surgical Planning

    Get PDF
    Three-dimensional (3D) medical imaging techniques have a fundamental role in the field of oral and maxillofacial surgery (OMFS). 3D images are used to guide diagnosis, assess the severity of disease, for pre-operative planning, per-operative guidance and virtual surgical planning (VSP). In the field of oral cancer, where surgical resection requiring the partial removal of the mandible is a common treatment, resection surgery is often based on 3D VSP to accurately design a resection plan around tumor margins. In orthognathic surgery and dental implant surgery, 3D VSP is also extensively used to precisely guide mandibular surgery. Image segmentation from the radiography images of the head and neck, which is a process to create a 3D volume of the target tissue, is a useful tool to visualize the mandible and quantify geometric parameters. Studies have shown that 3D VSP requires accurate segmentation of the mandible, which is currently performed by medical technicians. Mandible segmentation was usually done manually, which is a time-consuming and poorly reproducible process. This thesis presents four algorithms for mandible segmentation from CT and CBCT and contributes to some novel ideas for the development of automatic mandible segmentation for 3D VSP. We implement the segmentation approaches on head and neck CT/CBCT datasets and then evaluate the performance. Experimental results show that our proposed approaches for mandible segmentation in CT/CBCT datasets exhibit high accuracy

    EQUIPMENT TO ADDRESS INFRASTRUCTURE AND HUMAN RESOURCE CHALLENGES FOR RADIOTHERAPY IN LOW-RESOURCE SETTINGS

    Get PDF
    Millions of people in low- and middle- income countries (LMICs) are without access to radiation therapy and as rate of population growth in these regions increase and lifestyle factors which are indicative of cancer increase; the cancer burden will only rise. There are a multitude of reasons for lack of access but two themes among them are the lack of access to affordable and reliable teletherapy units and insufficient properly trained staff to deliver high quality care. The purpose of this work was to investigate to two proposed efforts to improve access to radiotherapy in low-resource areas; an upright radiotherapy chair (to facilitate low-cost treatment devices) and a fully automated treatment planning strategy. A fixed-beam patient treatment device would allow for reduced upfront and ongoing cost of teletherapy machines. The enabling technology for such a device is the immobilization chair. A rotating seated patient not only allows for a low-cost fixed treatment machine but also has dosimetric and comfort advantages. We examined the inter- and intra- fraction setup reproducibility, and showed they are less than 3mm, similar to reports for the supine position. The head-and-neck treatment site, one of the most challenging treatment planning, greatly benefits from the use of advanced treatment planning strategies. These strategies, however, require time consuming normal tissue and target contouring and complex plan optimization strategies. An automated treatment planning approach could reduce the additional number of medical physicists (the primary treatment planners) in LMICs by up to half. We used in-house algorithms including mutli-atlas contouring and quality assurance checks, combined with tools in the Eclipse Treatment Planning System®, to automate every step of the treatment planning process for head-and-neck cancers. Requiring only the patient CT scan, patient details including dose and fractionation, and contours of the gross tumor volume, high quality treatment plans can be created in less than 40 minutes
    • …
    corecore