4,960 research outputs found

    Anatomical Modelling of the Musculoskeletal System from MRI

    Full text link
    Abstract. This paper presents a novel approach for multi-organ (mus-culoskeletal system) automatic registration and segmentation from clini-cal MRI datasets, based on discrete deformable models (simplex meshes). We reduce the computational complexity using multi-resolution forces, multi-resolution hierarchical collision handling and large simulation time steps (implicit integration scheme), allowing real-time user control and cost-efficient segmentation. Radial forces and topological constraints (at-tachments) are applied to regularize the segmentation process. Based on a medial axis constrained approximation, we efficiently characterize shapes and deformations. We validate our methods for the hip joint and the thigh (20 muscles, 4 bones) on 4 datasets: average error=1.5mm, computation time=15min.

    Soft tissue structure modelling for use in orthopaedic applications and musculoskeletal biomechanics

    Get PDF
    We present our methodology for the three-dimensional anatomical and geometrical description of soft tissues, relevant for orthopaedic surgical applications and musculoskeletal biomechanics. The technique involves the segmentation and geometrical description of muscles and neurovascular structures from high-resolution computer tomography scanning for the reconstruction of generic anatomical models. These models can be used for quantitative interpretation of anatomical and biomechanical aspects of different soft tissue structures. This approach should allow the use of these data in other application fields, such as musculoskeletal modelling, simulations for radiation therapy, and databases for use in minimally invasive, navigated and robotic surgery

    Personalized hip joint kinetics during deep squatting in young, athletic adults

    Get PDF
    The goal of this study was to report deep squat hip kinetics in young, athletic adults using a personalized numerical model solution based on inverse dynamics. Thirty-five healthy subjects underwent deep squat motion capture acquisitions and MRI scans of the lower extremities. Musculoskeletal models were personalized using each subject's lower limb anatomy. The average peak hip joint reaction force was 274 percent bodyweight. Average peak hip and knee flexion angles were 107 degrees and 112 degrees respectively. These new findings show that deep squatting kinetics in the younger population differ substantially from the previously reported in vivo data in older subjects

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    An image-based kinematic model of the tibiotalar and subtalar joints and its application to gait analysis in children with Juvenile Idiopathic Arthritis

    Get PDF
    In vivo estimates of tibiotalar and the subtalar joint kinematics can unveil unique information about gait biomechanics, especially in the presence of musculoskeletal disorders affecting the foot and ankle complex. Previous literature investigated the ankle kinematics on ex vivo data sets, but little has been reported for natural walking, and even less for pathological and juvenile populations. This paper proposes an MRI-based morphological fitting methodology for the personalised definition of the tibiotalar and the subtalar joint axes during gait, and investigated its application to characterise the ankle kinematics in twenty patients affected by Juvenile Idiopathic Arthritis (JIA). The estimated joint axes were in line with in vivo and ex vivo literature data and joint kinematics variation subsequent to inter-operator variability was in the order of 1°. The model allowed to investigate, for the first time in patients with JIA, the functional response to joint impairment. The joint kinematics highlighted changes over time that were consistent with changes in the patient’s clinical pattern and notably varied from patient to patient. The heterogeneous and patient-specific nature of the effects of JIA was confirmed by the absence of a correlation between a semi-quantitative MRI-based impairment score and a variety of investigated joint kinematics indexes. In conclusion, this study showed the feasibility of using MRI and morphological fitting to identify the tibiotalar and subtalar joint axes in a non-invasive patient-specific manner. The proposed methodology represents an innovative and reliable approach to the analysis of the ankle joint kinematics in pathological juvenile populations

    Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion

    Get PDF
    We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa

    Musculoskeletal shoulder modelling for clinical applications

    Get PDF
    The shoulder is the most commonly dislocated joint in the human body, with the vast majority of these dislocations being located anteriorly. Anterior shoulder dislocations are commonly associated with capsuloligamentous injuries and osseous defects. Recurrent anterior instability is a common clinical problem and understanding the influence of structural damage on joint stability is an important adjunct to surgical decision-making. Clinical practice is guided by experience, radiology, retrospective analyses and physical cadaver experiments. As the stability of the shoulder is load dependent, with higher joint forces increasing instability, the aim of this thesis was to develop and validate computational shoulder models to simulate the effect of structural damage on joint stability under in-vivo loading conditions to aid surgical decision-making for patients with anterior shoulder instability. The UK National Shoulder Model, consisting of 21 upper limb muscles crossing 5 functional joints, was customised to accurately quantify shoulder loading during functional activities. Ten subject-specific shoulder models were developed from Magnetic Resonance Imaging and validated against electromyographic signals. These models were used to identify the best combination of anthropometric parameters that yield best model outcomes in shoulder loading through linear scaling of personalised shoulder models. These parameters were gender and the ratio of body height to shoulder width (p<0.04) and these model predictions are significantly improved (p<0.02) when compared to the generic model. The forces derived from the modelling were used in two subject-specific finite element models with an anatomically accurate representation of the labrum, to assess shoulder stability through concavity compression under physiological joint loading for pathologies associated with anterior shoulder instability. The key results from these studies were that there is a high risk of shoulder dislocation under physiological joint loading for patients with a 2 mm anterior or 4 mm anteroinferior osseous defect. The loss in anterior shoulder stability in overhead throwing athletes with intact glenoid following biceps tenodesis is compensated by a non-significant increase in rotator cuff muscle force which maintain shoulder stability across all overhead throwing sports, except baseball pitching, where biceps tenodesis has significantly decreased (p<0.02) anterior shoulder stability. The work in this thesis has advanced the technology of musculoskeletal modelling of the shoulder through the inclusion of concavity compression and has applied this to various relevant clinical questions through the further development of an anatomical atlas, and an atlas of tasks of daily living. The applications of such modelling are broader than those addressed here and therefore this work serves as the foundation for potential further studies, including the bespoke design of arthroplasty or other soft tissue procedures.Open Acces

    Improving musculoskeletal model scaling using an anatomical atlas:the importance of gender and anthropometric similarity to quantify joint reaction forces

    Get PDF
    Objective: The accuracy of a musculoskeletal model relies heavily on the implementation of the underlying anatomical dataset. Linear scaling of a generic model, despite being time and cost-efficient, produces substantial errors as it does not account for gender differences and inter-individual anatomical variations. The hypothesis of this study is that linear scaling to a musculoskeletal model with gender and anthropometric similarity to the individual subject produces similar results to the ones that can be obtained from a subject-specific model. Methods: A lower limb musculoskeletal anatomical atlas was developed consisting of ten datasets derived from magnetic resonance imaging of healthy subjects and an additional generic dataset from the literature. Predicted muscle activation and joint reaction force were compared with electromyography and literature data. Regressions based on gender and anthropometry were used to identify the use of atlas. Results: Primary predictors of differences for the joint reaction force predictions were mass difference for the ankle (p<0.001) and length difference for the knee and hip (p≤0.017) . Gender difference accounted for an additional 3% of the variance (p≤0.039) . Joint reaction force differences at the ankle, knee and hip were reduced by between 50% and 67% (p=0.005) when using a musculoskeletal model with the same gender and similar anthropometry in comparison with a generic model. Conclusion: Linear scaling with gender and anthropometric similarity can improve joint reaction force predictions in comparison with a scaled generic model. Significance: The scaling approach and atlas presented can improve the fidelity and utility of musculoskeletal models for subject-specific applications
    corecore