57 research outputs found

    Landslide characterization applying Sentinel-1 images and InSAR technique: The Muyubao landslide in the Three Gorges Reservoir area, China

    Get PDF
    Landslides are a common natural hazard that causes casualties and unprecedented economic losses every year, especially in vulnerable developing countries. Considering the high cost of in-situ monitoring equipment and the sparse coverage of monitoring points, the Sentinel-1 images and Interferometric Synthetic Aperture Radar (InSAR) technique were used to conduct landslide monitoring and analysis. The Muyubao landslide in the Three Gorges Reservoir area in China was taken as a case study. A total of 37 images from March 2016 to September 2017 were collected, and the displacement time series were extracted using the Stanford Method for Persistent Scatterer (StaMPS) small baselines subset method. The comparison to global positioning system monitoring results indicated that the InSAR processing of the Muyubao landslide was accurate and reliable. Combined with the field investigation, the deformation evolution and its response to triggering factors were analyzed. During this monitoring period, the creeping process of the Muyubao landslide showed obvious spatiotemporal deformation differences. The changes in the reservoir water level were the trigger of the Muyubao landslide, and its deformation mainly occurred during the fluctuation period and high-water level period of the reservoir

    Characterizing slope instability kinematics by integrating multi-sensor satellite remote sensing observations

    Get PDF
    Over the past few decades, the occurrence and intensity of geological hazards, such as landslides, have substantially risen due to various factors, including global climate change, seismic events, rapid urbanization and other anthropogenic activities. Landslide disasters pose a significant risk in both urban and rural areas, resulting in fatalities, infrastructure damages, and economic losses. Nevertheless, conventional ground-based monitoring techniques are often costly, time-consuming, and require considerable resources. Moreover, some landslide incidents occur in remote or hazardous locations, making ground-based observation and field investigation challenging or even impossible. Fortunately, the advancements in spaceborne remote sensing technology have led to the availability of large-scale and high-quality imagery, which can be utilized for various landslide-related applications, including identification, monitoring, analysis, and prediction. This efficient and cost-effective technology allows for remote monitoring and assessment of landslide risks and can significantly contribute to disaster management and mitigation efforts. Consequently, spaceborne remote sensing techniques have become vital for geohazard management in many countries, benefiting society by providing reliable downstream services. However, substantial effort is required to ensure that such benefits are provided. For establishing long-term data archives and reliable analyses, it is essential to maintain consistent and continued use of multi-sensor spaceborne remote sensing techniques. This will enable a more thorough understanding of the physical mechanisms responsible for slope instabilities, leading to better decision-making and development of effective mitigation strategies. Ultimately, this can reduce the impact of landslide hazards on the general public. The present dissertation contributes to this effort from the following perspectives: 1. To obtain a comprehensive understanding of spaceborne remote sensing techniques for landslide monitoring, we integrated multi-sensor methods to monitor the entire life cycle of landslide dynamics. We aimed to comprehend the landslide evolution under complex cascading events by utilizing various spaceborne remote sensing techniques, e.g., the precursory deformation before catastrophic failure, co-failure procedures, and post-failure evolution of slope instability. 2. To address the discrepancies between spaceborne optical and radar imagery, we present a methodology that models four-dimensional (4D) post-failure landslide kinematics using a decaying mathematical model. This approach enables us to represent the stress relaxation for the landslide body dynamics after failure. By employing this methodology, we can overcome the weaknesses of the individual sensor in spaceborne optical and radar imaging. 3. We assessed the effectiveness of a newly designed small dihedral corner reflector for landslide monitoring. The reflector is compatible with both ascending and descending satellite orbits, while it is also suitable for applications with both high-resolution and medium-resolution satellite imagery. Furthermore, although its echoes are not as strong as those of conventional reflectors, the cost of the newly designed reflectors is reduced, with more manageable installation and maintenance. To overcome this limitation, we propose a specific selection strategy based on a probability model to identify the reflectors in satellite images

    Investigating the Deformation of Slow Moving Landslides in the Northern Appennines of Italy with Differential Interferometry (InSAR)

    Get PDF
    The present work addresses different aspects of the analysis of landslide motion in the Northern Apennines of Italy by means of spaceborn radar interferometry (InSAR). Datasets from the satellite systems Envisat, COSMO SkyMed and Sentinel 1A were processed with different open source packages in order to assess technical issues related to different InSAR processing techniques and to obtain precise deformation measurements. One particular technical issue was the influence of the external digital elevation model, that is used to calculate and subtract the topographic phase, on final PS-InSAR and SBAS-results (chapter 3). It is common that different digital elevation models are available for a study area and often differences in final PS-InSAR/SBAS results can be observed. Due to the high landslide density in Northern Apennines, slope instabilities often interfere with man made structures. The case of Ripoli and Santa Maria Maddalena, South of Bologna, show in an interesting way this interaction between human activity and landslide deformation (chapter 4). Here, a double road tunnel was excavated under a slope that hosts several old deep seated landslides. Soon after excavation started in 2011 first deformations and damages on buildings were registered. InSAR derived deformation measurements document the landslide acceleration during the construction phase and show a decrease in displacement rates after the construction ceased. During the years 2013 and 2014 Northern Italy was struck by long enduring persistent rainfalls that caused numerous landslide reactivations. InSAR datasets were used to assess kinematics of 25 landslides during the years 2013 and 2015, hosted either by chaotic clay shales or pelitic turbidites (chapter 5). Deformation responses to precipitation were analysed in detail for eight selected cases, four of which are located in turbidites and four that are hosted by chaotic clay shales. Different deformation responses were discussed in relation to precipitation, morphology and landslide material

    Analysis of landslide movements using interferometric synthetic aperture radar: A case study in Hunza-Nagar Valley, Pakistan

    Get PDF
    From a geological standpoint, northern Pakistan is one of the most active and unstable areas in the world. As a consequence, many massive landslides have occurred in the area in historical times that have destroyed infrastructure, blocked the Hunza River, and damaged the Karakoram Highway repeatedly. However, despite the high frequency of large magnitude landslide events, and the consequent damages, the entire area is largely understudied, mainly due to the difficult logistics and the large distances involved. This work is aimed at applying the potential use of Interferometric Synthetic Aperture Radar (InSAR) for landslide identification and investigation for the Hunza-Nagar Region. Sentinel-1 images covering a period of more than two years (February 2017-August 2019) were used and processed by adopting the small baseline subset (SBAS) method. The obtained deformation rate measured along the line of sight (VLOS) varies from -114 to 20 mm/year. The downslope velocity deformation rates (Vslope) range from 0 to -300 mm/year. The Vslope stability threshold for our study area was calculated to be -14 mm/year from the Vslope standard deviation. Four active landslides with Vslope exceeding 14 mm/year were recognizable and have been confirmed by field inspection. The identified landslides listed from the most active to least active are the Humarri, Mayoon, Khai, and Ghulmet landslides, respectively. VLOS exceeding 114 mm/year was observed in the Humarri landslide, which posed a threat of damming a lake on the Hispar River and was also a risk to the Humarri Village located below the landslide. The maximum mean deformation detected in the Ghulmet, andMayoon landslide was in the order of 30 mm/year and 20 mm/year, respectively. More importantly, it was found that in places, the slope deformation time series showed a patchy correlation with precipitation and seismic events in the area. This may indicate a complex, and possibly uncoupled, relationship between the two controlling agents promoting the deformation. However, the collective impact of the two factors is evident in the form of a continuously descending deformation curve and clearly indicates the ground distortion. The results indicate a potentially critical situation related to the high deformation rates measured at the Humarri landslide. On this specific slope, conditions leading to a possible catastrophic failure cannot be ruled out and should be a priority for the application of mitigation measures

    Integration of differential interferometric synthetic aperture radar and persistent scatterer interferometric approaches to assess deformation in enshi city, hubei, China

    Get PDF
    Land surface deformation can severely damage socioeconomic living conditions around the world. This study aimed to identify the Shaziba landslide and further assess deformation activities in Enshi city. For this purpose, the sentinel-1 C-bands data acquired in ascending directions were processed with Sentinel Application Platform and Stanford Method for Persistent Scatterers (StaMPS) software packages. Our results revealed the location of a landslide that occurred on 21 July 2020 in the Shaziba area, Enshi Prefecture. More interesting deformation results were found in Enshi city for the first time with a deformation range from −51.6 to 54.2 mm/year. We conducted a thorough observation of different urban infrastructures such as commercial and residential buildings, roads, bridges, and airports in Enshi city and along the Qingjiang River to evaluate land surface deformation. Observations revealed that there are a number of influencing factors contributing to disturbing the natural environment and resources in Enshi Prefecture. Of these influencing factors, intensive rainfall is a major cause as are the infiltration of rainfall into the subsurface Silurian strata together with the load of infrastructure in the study area. If this issue is not addressed it could lead to devastating geo-hazard disasters in the future. Scientific approaches to determine various causes of frequent geo-hazards in this region are of great significance for developing early warning systems for disasters and ensuring the safety of residents’ lives and property

    Method for landslides detection with semi-automatic procedures: The case in the zone center-east of Cauca department, Colombia

    Get PDF
    Landslides are a common natural hazard that causes human casualties, but also infrastructure damage and land-use degradation. Therefore, a quantitative assessment of their presence is required by means of detecting and recognizing the potentially unstable areas. This research aims to develop a method supported on semiautomatic methods to detect potential mass movements at a regional scale. Five techniques were studied: Morphometry, SAR interferometry (InSAR), Persistent Scatterer InSAR (PS-InSAR), SAR polarimetry (PolSAR) and NDVI composites of Landsat 5, Landsat 7, and Landsat 8. The case study was chosen within the mid-eastern area of the Cauca state, which is characterised by its mountainous terrain and the presence of slope instabilities, officially registered in the CGS-SIMMA landslide inventory. This inventory revealed that the type `slide' occurred with 77.4% from the entire registries, `fall' with 16.5%, followed by `creeps' with 3%, flows with 2.6%, and `lateral spread' with 0.43%. As a result, we obtained the morphometric variables: slope, CONVI, TWI, landform, which were highly associated with landslides. The effect of a DEM in the processing flow of the InSAR method was similar for the InSAR coherence variable using the DEMs ASTER, PALSAR RTC, Topo-map, and SRTM. Then, a multiInSAR analysis gave displacement velocities in the LOS direction between -10 and 10 mm/year. With the dual-PolSAR analysis (Sentinel-1), VH and VV C-band polarised radar energy emitted median values of backscatters, for landslides, about of -14.5 dB for VH polarisation and -8.5 dB for VV polarisation. Also, L-band fully polarimetric NASA-UAVSAR data allowed to nd the mechanism of dispersion of CGS landslide inventory: 39% for surface scattering, 46.4% for volume dispersion, and 14.6% for double-bounce scattering. The optical remote sensing provided NDVI composites derived from Landsat series between 2012 and 2016, showing that NDVI values between 0.40 and 0.70 had a high correlation to landslides. In summary, we found the highest categories related to landslides by Weight of Evidence method (WofE) for each spaceborne technique applied. Finally, these results were merged to generate the landslide detection model by using the supervised machine learning method of Random Forest. By taking training and test samples, the precision of the detection model was of about 70% for the rotational and translational types.Los deslizamientos son una amenaza natural que causa pérdidas humanas, daños a la infraestructura y degradación del suelo. Una evaluación cuantitativa de su presencia se requiere mediante la detección y el reconocimiento de potenciales áreas inestables. Esta investigación tuvo como alcance desarrollar un método soportado en métodos semi-automáticos para detectar potenciales movimientos en masa a escala regional. Cinco técnicas fueron estudiadas: Morfometría, Interferometría radar, Interferometría con Persistent Scatterers, Polarimetría radar y composiciones del NDVI con los satélites Landsat 5, Landsat 7 y Landsat 8. El caso de estudio se seleccionó dentro de la región intermedia al este del departamento del Cauca, la cual se caracteriza por terreno montañoso y la presencia de inestabilidades de la pendiente oficialmente registrados en el servicio SIMMA del Servicio Geológico Colombiano. Este inventario reveló que el tipo de movimiento deslizamiento ocurrió con una frecuencia relativa de 77.4%, caidos con el 16.5% de los casos y reptaciones con 3%, flujos con 2.6% y propagación lateral con 0.43%. Como resultado, se obtuvo las variables morfométricas: pendiente, convergencia, índice topográfico de humedad y forma del terreno altamente asociados con los deslizamientos. El efecto de un DEM en el procesamiento del método InSAR fue similar para la variable coherencia usando los DEMs: ASTER, PAlSAR RTC, Topo-map y SRTM. Un análisis Multi-InSAR estimó velocidades de desplazamiento en dirección de vista del radar entre -10 y 10 mm/año. El análisis de polarimetría dual del Sentinel-1 arrojó valores de retrodispersión promedio de -14.5 dB en la banda VH y -8.5dB en la banda VV. Las cuatro polarimetrías del sensor aéreo UAVSAR permitió caracterizar el mecanismo de dispersión del Inventario de Deslizamiento así: 39% en el mecanismo de superficie, 46.4% en el mecanismo de volumen y 14.6% en el mecanismo de doble rebote. La información generada en el rango óptico permitió obtener composiciones de NDVI derivados de la plataforma Landsat entre los años 2012 y 2016, mostrando que el rango entre 0.4 y 0.7 tuvieron una alta asociación con los deslizamientos. En esta investigación se determinaron las categorías de las variables de Teledetección más altamente relacionadas con los movimientos en masa mediante el método de Pesos de Evidencias (WofE). Finalmente, estos resultados se fusionaron para generar el modelo de detección de deslizamientos usando el método supervisado de aprendizaje de máquina Random Forest. Tomando muestras aleatorias para entrenar y validar el modelo en una proporción 70:30, el modelo de detección, especialmente los movimientos de tipo rotacional y traslacional fueron clasificados con una tasa general de éxito del 70%.Ministerio de CienciasConvocatoria 647 de 2014Research line: Geotechnics and Geoenvironmental HazardDoctorad

    GPS and InSAR Time Series Analysis: Deformation Monitoring Application in a Hydraulic Engineering Resettlement Zone, Southwest China

    Get PDF
    Booming development of hydropower in China has resulted in increasing concerns about the related resettlement issues. Both global positioning system (GPS) and persistent scatterer interferometric synthetic aperture radar (InSAR) time series analysis are applied to measuring the magnitude and monitoring the spatial and temporal variations of land surface displacement in Hanyuan, a hydraulic engineering resettlement zone, southwest China. The results from the GPS monitoring system established in Hanyuan match well the digital inclinometer results, suggesting that the GPS monitoring system can be employed as a complement to the traditional ground movement monitoring methods. The InSAR time series witness various patterns and magnitudes of deformation in the resettlement zone. Combining the two complementary techniques will overcome the limitations of the single method
    • …
    corecore