175 research outputs found

    A Radio Link Quality Model and Simulation Framework for Improving the Design of Embedded Wireless Systems

    Get PDF
    Despite the increasing application of embedded wireless systems, developers face numerous challenges during the design phase of the application life cycle. One of the critical challenges is ensuring performance reliability with respect to radio link quality. Specifically, embedded links experience exaggerated link quality variation, which results in undesirable wireless performance characteristics. Unfortunately, the resulting post-deployment behaviors often necessitate network redeployment. Another challenge is recovering from faults that commonly occur in embedded wireless systems, including node failure and state corruption. Self-stabilizing algorithms can provide recovery in the presence of such faults. These algorithms guarantee the eventual satisfaction of a given state legitimacy predicate regardless of the initial state of the network. Their practical behavior is often different from theoretical analyses. Unfortunately, there is little tool support for facilitating the experimental analysis of self-stabilizing systems. We present two contributions to support the design phase of embedded wireless system development. First, we provide two empirical models that predict radio-link quality within specific deployment environments. These models predict link performance as a function of inter-node distance and radio power level. The models are culled from extensive experimentation in open grass field and dense forest environments using all radio power levels and covering up to the maximum distances reachable by the radio. Second, we provide a simulation framework for simulating self-stabilizing algorithms. The framework provides three feature extensions: (i) fault injection to study algorithm behavior under various fault scenarios, (ii) automated detection of non-stabilizing behavior; and (iii) integration of the link quality models described above. Our contributions aim at avoiding problems that could result in the need for network redeployment

    Distributed Detection of Node Capture Attacks in Wireless Sensor Networks

    Get PDF

    Surveillance of sensitive fenced areas using duty-cycled wireless sensor networks with asymmetrical links

    Get PDF
    © 2018 Elsevier Ltd. This paper presents a cross-layer communication protocol for Wireless Sensor Network (WSN) enabled surveillance system for sensitive fenced areas, e.g., nuclear/oil site. Initially, the proposed protocol identifies the boundary nodes of the deployed WSN to be used as sentinel nodes, i.e., nodes that are always in active state. The remaining nodes are used as duty-cycled relay nodes during the data communication phase. The boundary nodes identification process and data routing are both performed using an enhanced version of the Greedy Perimeter Stateless Routing (GPSR) protocol, which relies on a Non Unit Disk Graph (N-UDG) and referred to as GPSR over Symmetrical Links (GPSR-SL). Both greedy and perimeter modes of GPSR-SL forward data through symmetrical links only. Moreover, we apply the Mutual Witness (MW) fix to the Gabriel Graph (GG) planarization, to enable a correct perimeter routing on a N-UDG. Simulation results show that the proposed protocol achieves higher packet delive ry ratio by up to 3.63%, energy efficiency and satisfactory latency when compared to the same protocol based on the original GPSR

    The use of computational geometry techniques to resolve the issues of coverage and connectivity in wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) enhance the ability to sense and control the physical environment in various applications. The functionality of WSNs depends on various aspects like the localization of nodes, the strategies of node deployment, and a lifetime of nodes and routing techniques, etc. Coverage is an essential part of WSNs wherein the targeted area is covered by at least one node. Computational Geometry (CG) -based techniques significantly improve the coverage and connectivity of WSNs. This paper is a step towards employing some of the popular techniques in WSNs in a productive manner. Furthermore, this paper attempts to survey the existing research conducted using Computational Geometry-based methods in WSNs. In order to address coverage and connectivity issues in WSNs, the use of the Voronoi Diagram, Delaunay Triangulation, Voronoi Tessellation, and the Convex Hull have played a prominent role. Finally, the paper concludes by discussing various research challenges and proposed solutions using Computational Geometry-based techniques.Web of Science2218art. no. 700

    Context aware Sensor Networks

    Get PDF

    Scalable and Energy Efficient Software Architecture for Human Behavioral Measurements

    Get PDF
    Understanding human behavior is central to many professions including engineering, health and the social sciences, and has typically been measured through surveys, direct observation and interviews. However, these methods are known to have drawbacks, including bias, problems with recall accuracy, and low temporal fidelity. Modern mobile phones have a variety of sensors that can be used to find activity patterns and infer the underlying human behaviors, placing a heavy load on the phone's battery. Social science researchers hoping to leverage this new technology must carefully balance the fidelity of the data with the cost in phone performance. Crucially, many of the data collected are of limited utility because they are redundant or unnecessary for a particular study question. Previous researchers have attempted to address this problem by modifying the measurement schedule based on sensed context, but a complete solution remains elusive. In the approach described here, measurement is made contingent on sensed context and measurement objectives through extensions to a configuration language, allowing significant improvement to flexibility and reliability. Empirical studies indicate a significant improvement in energy efficiency with acceptable losses in data fidelity

    IoT@run-time: a model-based approach to support deployment and self-adaptations in IoT systems

    Get PDF
    Today, most Internet of Things (IoT) systems leverage edge and fog computing to meet increasingly restrictive requirements and improve quality of service (QoS). Although these multi-layer architectures can improve system performance, their design is challenging because the dynamic and changing IoT environment can impact the QoS and system operation. In this thesis, we propose a modeling-based approach that addresses the limitations of existing studies to support the design, deployment, and management of self-adaptive IoT systems. We have designed a domain specific language (DSL) to specify the self-adaptive IoT system, a code generator that generates YAML manifests for the deployment of the IoT system, and a framework based on the MAPE-K loop to monitor and adapt the IoT system at runtime. Finally, we have conducted several experimental studies to validate the expressiveness and usability of the DSL and to evaluate the ability and performance of our framework to address the growth of concurrent adaptations on an IoT system.Hoy en día, la mayoría de los sistemas de internet de las cosas (IoT, por su sigla en inglés) aprovechan la computación en el borde (edge computing) y la computación en la niebla (fog computing) para cumplir requisitos cada vez más restrictivos y mejorar la calidad del servicio. Aunque estas arquitecturas multicapa pueden mejorar el rendimiento del sistema, diseñarlas supone un reto debido a que el entorno de IoT dinámico y cambiante puede afectar a la calidad del servicio y al funcionamiento del sistema. En esta tesis proponemos un enfoque basado en el modelado que aborda las limitaciones de los estudios existentes para dar soporte en el diseño, el despliegue y la gestión de sistemas de IoT autoadaptables. Hemos diseñado un lenguaje de dominio específico (DSL) para modelar el sistema de IoT autoadaptable, un generador de código que produce manifiestos YAML para el despliegue del sistema de IoT y un marco basado en el bucle MAPE-K para monitorizar y adaptar el sistema de IoT en tiempo de ejecución. Por último, hemos llevado a cabo varios estudios experimentales para validar la expresividad y usabilidad del DSL y evaluar la capacidad y el rendimiento de nuestro marco para abordar el crecimiento de las adaptaciones concurrentes en un sistema de IoT.Avui dia, la majoria dels sistemes d'internet de les coses (IoT, per la sigla en anglès) aprofiten la informàtica a la perifèria (edge computing) i la informàtica a la boira (fog computing) per complir requisits cada cop més restrictius i millorar la qualitat del servei. Tot i que aquestes arquitectures multicapa poden millorar el rendiment del sistema, dissenyar-les suposa un repte perquè l'entorn d'IoT dinàmic i canviant pot afectar la qualitat del servei i el funcionament del sistema. En aquesta tesi proposem un enfocament basat en el modelatge que aborda les limitacions dels estudis existents per donar suport al disseny, el desplegament i la gestió de sistemes d'IoT autoadaptatius. Hem dissenyat un llenguatge de domini específic (DSL) per modelar el sistema d'IoT autoadaptatiu, un generador de codi que produeix manifestos YAML per al desplegament del sistema d'IoT i un marc basat en el bucle MAPE-K per monitorar i adaptar el sistema d'IoT en temps d'execució. Finalment, hem dut a terme diversos estudis experimentals per validar l'expressivitat i la usabilitat del DSL i avaluar la capacitat i el rendiment del nostre marc per abordar el creixement de les adaptacions concurrents en un sistema d'IoT.Tecnologies de la informació i de xarxe

    Lifetime and Energy Hole Evolution Analysis in Data-Gathering Wireless Sensor Networks

    Get PDF
    Abstract-Network lifetime is a crucial performance metric to evaluate data-gathering wireless sensor networks (WSNs) where battery-powered sensor nodes periodically sense the environment and forward collected samples to a sink node. In this paper, we propose an analytic model to estimate the entire network lifetime from network initialization until it is completely disabled, and determine the boundary of energy hole in a data-gathering WSN. Specifically, we theoretically estimate the traffic load, energy consumption, and lifetime of sensor nodes during the entire network lifetime. Furthermore, we investigate the temporal and spatial evolution of energy hole, and apply our analytical results to WSN routing in order to balance the energy consumption and improve the network lifetime. Extensive simulation results are provided to demonstrate the validity of the proposed analytic model in estimating the network lifetime and energy hole evolution process. Index Terms-wireless sensor network, network lifetime, energy hole, energy efficiency, routing

    Enabling connectivity for tactical networks in mountainous areas by aerial relays

    Get PDF
    A general modeling framework for realistic performance evaluations of tactical mobile ad-hoc networks deployed in mountainous areas is presented. The framework is easily extensible, and can be eventually automated. It can be also used to generate data for other network simulators. The framework utilizes the freely downloadable high resolution 3D terrain data to define time dependent trajectories of network nodes. The node speeds and directions are linked to the terrain profile which extends the previously proposed mobility models. The path-loss analysis along the node trajectories revealed the need for aerial relays to enable full network connectivity at all times. The network consisting of 5 cluster heads and a single stationary relay is considered as a case study. The relay location and its antenna height are optimized to achieve the line-of-sight connectivity over the whole mission duration. The antenna radiation pattern at the relay is incorporated in the analysis. The resulting star network topology is used by the cluster heads to broadcast their packets to all other cluster heads. Several relaying schemes including the amplify-and-forward and the decode-and-forward relaying are studied together with the go-back-N retransmissions to achieve the reliable data transfer

    Enabling connectivity for tactical networks in mountainous areas by aerial relays

    Get PDF
    The dimension of the Meiac as a diffuser of Latin American art has been key in Spain in the late twentieth century. The genesis of the museum, its cultural policy of debate and diffusion, and the creation of a Latin American collection, which until then did not exist in Spain, forced Spanish art criticism to look at and reconsider work from Latin America. At present the Meiac has developed the new technological platforms, as a new perspective of identity and common imaginaries between Spain and Latin America.La dimensión del Meiac como difusor del arte latinoamericano ha sido clave en España a finales del siglo XX. La génesis del museo, su política cultural de debate y difusión y la creación de una colección latinoamericana, hasta entonces inexistente en España, obligó a la crítica artística española a mirar y a reconsiderar la obra procedente de Latinoamérica. En la actualidad el Meiac ha desarrollado las nuevas plataformas tecnológicas, como una nueva perspectiva de identidad e imaginarios comunes entre España y América Latina
    corecore