57,389 research outputs found

    A Matrix-Analytic Solution for Randomized Load Balancing Models with Phase-Type Service Times

    Full text link
    In this paper, we provide a matrix-analytic solution for randomized load balancing models (also known as \emph{supermarket models}) with phase-type (PH) service times. Generalizing the service times to the phase-type distribution makes the analysis of the supermarket models more difficult and challenging than that of the exponential service time case which has been extensively discussed in the literature. We first describe the supermarket model as a system of differential vector equations, and provide a doubly exponential solution to the fixed point of the system of differential vector equations. Then we analyze the exponential convergence of the current location of the supermarket model to its fixed point. Finally, we present numerical examples to illustrate our approach and show its effectiveness in analyzing the randomized load balancing schemes with non-exponential service requirements.Comment: 24 page

    Doubly Exponential Solution for Randomized Load Balancing Models with General Service Times

    Full text link
    In this paper, we provide a novel and simple approach to study the supermarket model with general service times. This approach is based on the supplementary variable method used in analyzing stochastic models extensively. We organize an infinite-size system of integral-differential equations by means of the density dependent jump Markov process, and obtain a close-form solution: doubly exponential structure, for the fixed point satisfying the system of nonlinear equations, which is always a key in the study of supermarket models. The fixed point is decomposited into two groups of information under a product form: the arrival information and the service information. based on this, we indicate two important observations: the fixed point for the supermarket model is different from the tail of stationary queue length distribution for the ordinary M/G/1 queue, and the doubly exponential solution to the fixed point can extensively exist even if the service time distribution is heavy-tailed. Furthermore, we analyze the exponential convergence of the current location of the supermarket model to its fixed point, and study the Lipschitz condition in the Kurtz Theorem under general service times. Based on these analysis, one can gain a new understanding how workload probing can help in load balancing jobs with general service times such as heavy-tailed service.Comment: 40 pages, 4 figure

    Prochlo: Strong Privacy for Analytics in the Crowd

    Full text link
    The large-scale monitoring of computer users' software activities has become commonplace, e.g., for application telemetry, error reporting, or demographic profiling. This paper describes a principled systems architecture---Encode, Shuffle, Analyze (ESA)---for performing such monitoring with high utility while also protecting user privacy. The ESA design, and its Prochlo implementation, are informed by our practical experiences with an existing, large deployment of privacy-preserving software monitoring. (cont.; see the paper

    Privacy Preserving Multi-Server k-means Computation over Horizontally Partitioned Data

    Full text link
    The k-means clustering is one of the most popular clustering algorithms in data mining. Recently a lot of research has been concentrated on the algorithm when the dataset is divided into multiple parties or when the dataset is too large to be handled by the data owner. In the latter case, usually some servers are hired to perform the task of clustering. The dataset is divided by the data owner among the servers who together perform the k-means and return the cluster labels to the owner. The major challenge in this method is to prevent the servers from gaining substantial information about the actual data of the owner. Several algorithms have been designed in the past that provide cryptographic solutions to perform privacy preserving k-means. We provide a new method to perform k-means over a large set using multiple servers. Our technique avoids heavy cryptographic computations and instead we use a simple randomization technique to preserve the privacy of the data. The k-means computed has exactly the same efficiency and accuracy as the k-means computed over the original dataset without any randomization. We argue that our algorithm is secure against honest but curious and passive adversary.Comment: 19 pages, 4 tables. International Conference on Information Systems Security. Springer, Cham, 201
    corecore