1,382 research outputs found

    Robust Fuzzy Control using the Type2 Distending Function

    Get PDF

    Elliptic membership functions and the modeling uncertainty in type-2 fuzzy logic systems as applied to time series prediction

    Get PDF
    In this paper, our aim is to compare and contrast various ways of modeling uncertainty by using different type-2 fuzzy membership functions available in literature. In particular we focus on a novel type-2 fuzzy membership function–”Elliptic membership function”. After briefly explaining the motivation behind the suggestion of the elliptic membership function, we analyse the uncertainty distribution along its support, and we compare its uncertainty modeling capability with the existing membership functions. We also show how the elliptic membership functions perform in fuzzy arithmetic. In addition to its extra advantages over the existing type-2 fuzzy membership functions such as having decoupled parameters for its support and width, this novel membership function has some similar features to the Gaussian and triangular membership functions in addition and multiplication operations. Finally, we have tested the prediction capability of elliptic membership functions using interval type-2 fuzzy logic systems on US Dollar/Euro exchange rate prediction problem. Throughout the simulation studies, an extreme learning machine is used to train the interval type-2 fuzzy logic system. The prediction results show that, in addition to their various advantages mentioned above, elliptic membership functions have comparable prediction results when compared to Gaussian and triangular membership functions

    Managing Epistemic Uncertainty in Design Models through Type-2 Fuzzy Logic Multidisciplinary Optimization

    Full text link
    Humans have a natural ability to operate in dynamic environments and perform complex tasks with little perceived effort. An experienced ship designer can intuitively understand the general consequences of design choices and the general attributes of a good vessel. A person's knowledge is often ill-structured, subjective, and imprecise, but still incredibly effective at capturing general patterns of the real-world or of a design space. Computers on the other hand, can rapidly perform a large number of precise computations using well-structured, objective mathematical models, providing detailed analyses and formal evaluations of a specfic set of design candidates. In ship design, which involves generating knowledge for decision-making through time, engineers interactively use their own mental models and information gathered from computer-based optimization tools to make decisions which steer a vessel's design. In recent decades, the belief that large synthesis codes can help achieve cutting-edge ship performance has led to an increased popularity of optimization methods, potentially leading to rewarding results. And while optimization has proven fruitful to structural engineering and the aerospace industry, its applicability to early-stage design is more limited for three main reasons. First, mathematical models are by definition a reduction which cannot properly describe all aspects of the ship design problem. Second, in multidisciplinary optimization, a low-fidelity model may incorrectly drive a design, biasing the system level solution. Finally, early-stage design is plagued with limited information, limiting the designer's ability to develop models to inform decisions. This research extends previously done work by incorporating type-2 fuzzy logic into a human-centric multidisciplinary optimization framework. The original framework used type-1 fuzzy logic to incorporate human expertise into optimization models through linguistic variables. However, a type-1 system does not properly account for the uncertainty associated with linguistic terms, and thus does not properly represent the uncertainty associated with a human mental model. This limitation is corrected with the type-2 fuzzy logic multidisciplinary optimization presented in this work, which more accurately models a designer's ability to "communicate, reason and make rational decisions in an environment of imprecision, uncertainty, incompleteness of information and partiality of truth" (Mendel et al., 2010). It uses fuzzy definitions of linguistic variables and rule banks to incorporate "human intelligence" into design models, and better handles the linguistic uncertainty inherent to human knowledge and communication. A general mathematical optimization proof of concept and a planing craft case study are presented in this dissertation to show how mathematical models can be enhanced by incorporating expert opinion into them. Additionally, the planing craft case study shows how human mental models can be leveraged to quickly estimate plausible values of ship parameters when no model exists, increasing the designer's ability to run optimization methods when information is limited.PHDNaval Architecture & Marine EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145891/1/doriancb_1.pd

    Performance Analysis of Extracted Rule-Base Multivariable Type-2 Self-Organizing Fuzzy Logic Controller Applied to Anesthesia

    Get PDF
    We compare type-1 and type-2 self-organizing fuzzy logic controller (SOFLC) using expert initialized and pretrained extracted rule-bases applied to automatic control of anaesthesia during surgery. We perform experimental simulations using a nonfixed patient model and signal noise to account for environmental and patient drug interaction uncertainties. The simulations evaluate the performance of the SOFLCs in their ability to control anesthetic delivery rates for maintaining desired physiological set points for muscle relaxation and blood pressure during a multistage surgical procedure. The performances of the SOFLCs are evaluated by measuring the steady state errors and control stabilities which indicate the accuracy and precision of control task. Two sets of comparisons based on using expert derived and extracted rule-bases are implemented as Wilcoxon signed-rank tests. Results indicate that type-2 SOFLCs outperform type-1 SOFLC while handling the various sources of uncertainties. SOFLCs using the extracted rules are also shown to outperform those using expert derived rules in terms of improved control stability

    Plant-wide modelling and control of nitrous oxide emissions from wastewater treatment plants

    Get PDF

    Applications of Emerging Smart Technologies in Farming Systems: A Review

    Get PDF
    The future of farming systems depends mainly on adopting innovative intelligent and smart technologies The agricultural sector s growth and progress are more critical to human survival than any other industry Extensive multidisciplinary research is happening worldwide for adopting intelligent technologies in farming systems Nevertheless when it comes to handling realistic challenges in making autonomous decisions and predictive solutions in farming applications of Information Communications Technologies ICT need to be utilized more Information derived from data worked best on year-to-year outcomes disease risk market patterns prices or customer needs and ultimately facilitated farmers in decision-making to increase crop and livestock production Innovative technologies allow the analysis and correlation of information on seed quality soil types infestation agents weather conditions etc This review analysis highlights the concept methods and applications of various futuristic cognitive innovative technologies along with their critical roles played in different aspects of farming systems like Artificial Intelligence AI IoT Neural Networks utilization of unmanned vehicles UAV Big data analytics Blok chain technology et

    Genetic fuzzy system predicting contractile reactivity patterns of small arteries

    Get PDF
    Monitoring of physiological surrogate end points in drug development generates dynamic time-domain data reflecting the state of the biological system. Conventional data analysis often reduces the information in these data by extracting specific data points, thereby discarding potentially useful information. We developed a genetic fuzzy system (GFS) algorithm that is capable of learning all information in time-domain physiological data. Data on isometric force development of isolated small arteries were used as a framework for developing and optimizing a GFS. GFS performance was improved by several strategies. Results show that optimized fuzzy systems (OFSs) predict contractile reactivity of arteries accurately. In addition, OFSs identified significant differences that were undetectable using conventional analysis in the responses of arteries between groups. We concluded that OFSs may be used in clustering or classification tasks as aids in the objective identification or prediction of dynamic physiological behavior

    STUDY OF CONTROL SCHEMES FOR SERIES HYBRID-ELECTRIC POWERTRAIN FOR UNMANNED AERIAL SYSTEMS

    Get PDF
    Hybrid-Electric aircraft powertrain modeling for Unmanned Aerial Systems (UAS) is a useful tool for predicting powertrain performance of the UAS aircraft. However, for small UAS, potential gains in range and endurance can depend significantly on the aircraft flight profile and powertrain control logic in addition to the subsequent impact on the performance of powertrain components. Small UAS aircraft utilize small-displacement engines with poor thermal efficiency and, therefore, could benefit from a hybridized powertrain by reducing fuel consumption. This study uses a dynamic simulation of a UAS, representative flight profiles, and powertrain control logic approaches to evaluate the performance of a series hybrid-electric powertrain. Hybrid powertrain component models were developed using lookup tables of test data and model parameterization approaches to generate a UAS dynamic system model. These models were then used to test three different hybrid powertrain control strategies for their ability to provide efficient IC engine operation during the charging process. The baseline controller analyzed in this work does not focus on optimizing fuel efficiency. In contrast, the other two controllers utilize engine fuel consumption data to develop a scheme to reduce fuel consumption during the battery charging operation. The performance of the powertrain controllers is evaluated for a UAS operating on three different representative mission profiles relevant to cruising, maneuvering, and surveillance missions. Fuel consumption and battery state of charge form two metrics that are used to evaluate the performance of each controller. The first fuel efficiency-focused controller is the ideal operating line (IOL) strategy. The IOL strategy uses performance maps obtained by engine characterization on a specialized dynamometer. The simulations showed the IOL strategy produced average fuel economy improvements ranging from 12%-15% for a 30-minute mission profile compared to the baseline controller. The last controller utilizes fuzzy logic to manage the charging operations while maintaining efficient fuel operation where it produced similar fuel saving to the IOL method but were generally higher by 2-3%. The importance of developing detailed dynamic system models to capture the power variations during flight with fuel-efficient powertrain controllers is key to maximizing small UAS hybrid powertrain performance in varying operating conditions
    • …
    corecore