962 research outputs found

    Synchronization and Characterization of an Ultra-Short Laser for Photoemission and Electron-Beam Diagnostics Studies at a Radio Frequency Photoinjector

    Full text link
    A commercially-available titanium-sapphire laser system has recently been installed at the Fermilab A0 photoinjector laboratory in support of photoemission and electron beam diagnostics studies. The laser system is synchronized to both the 1.3-GHz master oscillator and a 1-Hz signal use to trigger the radiofrequency system and instrumentation acquisition. The synchronization scheme and performance are detailed. Long-term temporal and intensity drifts are identified and actively suppressed to within 1 ps and 1.5%, respectively. Measurement and optimization of the laser's temporal profile are accomplished using frequency-resolved optical gating.Comment: 16 pages, 17 figures, Preprint submitted to Elsevie

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed

    Optical altimeter receiver systems study and design for a spaceborne laser altimeter

    Get PDF
    Design and specifications for optical altimeter receiver system

    High Speed CMOS VCO For Advanced Communications [TK7871.99.M99 C435 2003 f rb][Microfiche 7271].

    Get PDF
    Peningkatan keperluan bagi komunikasi tanpa wayar dalam suara dan data telah memotivasikan kerja-kerja untuk meningkatkan tahap intregrasi dalam pemancar-penerima berfrekuensi radio (RF) baru-baru ini. The fast growing demand of wireless communications for voice and data has driven recent efforts to dramatically increase the level of integration in RF transceivers

    Chaos and bifurcation in time delayed third order phase-locked loop

    Get PDF
    In this paper, the modern nonlinear theory is applied to a third order phase locked loop (PLL) with a feedback time delay. Due to this delay, different behaviors that are not accounted for in a conventional PLL model are identified, namely, oscillatory instability, periodic doubling and chaos. Firstly, a Pade approximation is used to model the time delay where it is utilized in deriving the state space representation of the PLL under investigation. The PLL under consideration is simulated with and without time delay. It is shown that for certain loop gain (control parameter) and time delay values, the system changes its stability and becomes chaotic. Simulations show that the PLL with time delay becomes chaotic for control parameter value less than the one without time delay, i.e, the stable region becomes narrower. Moreover, the chaotic region becomes wider as time delay increases
    corecore