6 research outputs found

    Information Theory and Machine Learning

    Get PDF
    The recent successes of machine learning, especially regarding systems based on deep neural networks, have encouraged further research activities and raised a new set of challenges in understanding and designing complex machine learning algorithms. New applications require learning algorithms to be distributed, have transferable learning results, use computation resources efficiently, convergence quickly on online settings, have performance guarantees, satisfy fairness or privacy constraints, incorporate domain knowledge on model structures, etc. A new wave of developments in statistical learning theory and information theory has set out to address these challenges. This Special Issue, "Machine Learning and Information Theory", aims to collect recent results in this direction reflecting a diverse spectrum of visions and efforts to extend conventional theories and develop analysis tools for these complex machine learning systems

    Analyzing the influence of hyper-parameters and regularizers of topic modeling in terms of Renyi entropy

    No full text
    Topic modeling is a popular technique for clustering large collections of text documents. A variety of different types of regularization is implemented in topic modeling. In this paper, we propose a novel approach for analyzing the influence of different regularization types on results of topic modeling. Based on Renyi entropy, this approach is inspired by the concepts from statistical physics, where an inferred topical structure of a collection can be considered an information statistical system residing in a non-equilibrium state. By testing our approach on four models—Probabilistic Latent Semantic Analysis (pLSA), Additive Regularization of Topic Models (BigARTM), Latent Dirichlet Allocation (LDA) with Gibbs sampling, LDA with variational inference (VLDA)—we, first of all, show that the minimum of Renyi entropy coincides with the “true” number of topics, as determined in two labelled collections. Simultaneously, we find that Hierarchical Dirichlet Process (HDP) model as a well-known approach for topic number optimization fails to detect such optimum. Next, we demonstrate that large values of the regularization coefficient in BigARTM significantly shift the minimum of entropy from the topic number optimum, which effect is not observed for hyper-parameters in LDA with Gibbs sampling. We conclude that regularization may introduce unpredictable distortions into topic models that need further research

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore