15,752 research outputs found

    A Big Data Analyzer for Large Trace Logs

    Full text link
    Current generation of Internet-based services are typically hosted on large data centers that take the form of warehouse-size structures housing tens of thousands of servers. Continued availability of a modern data center is the result of a complex orchestration among many internal and external actors including computing hardware, multiple layers of intricate software, networking and storage devices, electrical power and cooling plants. During the course of their operation, many of these components produce large amounts of data in the form of event and error logs that are essential not only for identifying and resolving problems but also for improving data center efficiency and management. Most of these activities would benefit significantly from data analytics techniques to exploit hidden statistical patterns and correlations that may be present in the data. The sheer volume of data to be analyzed makes uncovering these correlations and patterns a challenging task. This paper presents BiDAl, a prototype Java tool for log-data analysis that incorporates several Big Data technologies in order to simplify the task of extracting information from data traces produced by large clusters and server farms. BiDAl provides the user with several analysis languages (SQL, R and Hadoop MapReduce) and storage backends (HDFS and SQLite) that can be freely mixed and matched so that a custom tool for a specific task can be easily constructed. BiDAl has a modular architecture so that it can be extended with other backends and analysis languages in the future. In this paper we present the design of BiDAl and describe our experience using it to analyze publicly-available traces from Google data clusters, with the goal of building a realistic model of a complex data center.Comment: 26 pages, 10 figure

    Disaggregating non-volatile memory for throughput-oriented genomics workloads

    Get PDF
    Massive exploitation of next-generation sequencing technologies requires dealing with both: huge amounts of data and complex bioinformatics pipelines. Computing architectures have evolved to deal with these problems, enabling approaches that were unfeasible years ago: accelerators and Non-Volatile Memories (NVM) are becoming widely used to enhance the most demanding workloads. However, bioinformatics workloads are usually part of bigger pipelines with different and dynamic needs in terms of resources. The introduction of Software Defined Infrastructures (SDI) for data centers provides roots to dramatically increase the efficiency in the management of infrastructures. SDI enables new ways to structure hardware resources through disaggregation, and provides new hardware composability and sharing mechanisms to deploy workloads in more flexible ways. In this paper we study a state-of-the-art genomics application, SMUFIN, aiming to address the challenges of future HPC facilities.This work is partially supported by the European Research Council (ERC) under the EU Horizon 2020 programme (GA 639595), the Spanish Ministry of Economy, Industry and Competitivity (TIN2015-65316-P) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    BDGS: A Scalable Big Data Generator Suite in Big Data Benchmarking

    Full text link
    Data generation is a key issue in big data benchmarking that aims to generate application-specific data sets to meet the 4V requirements of big data. Specifically, big data generators need to generate scalable data (Volume) of different types (Variety) under controllable generation rates (Velocity) while keeping the important characteristics of raw data (Veracity). This gives rise to various new challenges about how we design generators efficiently and successfully. To date, most existing techniques can only generate limited types of data and support specific big data systems such as Hadoop. Hence we develop a tool, called Big Data Generator Suite (BDGS), to efficiently generate scalable big data while employing data models derived from real data to preserve data veracity. The effectiveness of BDGS is demonstrated by developing six data generators covering three representative data types (structured, semi-structured and unstructured) and three data sources (text, graph, and table data)
    • …
    corecore