63,004 research outputs found

    Updating, Upgrading, Refining, Calibration and Implementation of Trade-Off Analysis Methodology Developed for INDOT

    Get PDF
    As part of the ongoing evolution towards integrated highway asset management, the Indiana Department of Transportation (INDOT), through SPR studies in 2004 and 2010, sponsored research that developed an overall framework for asset management. This was intended to foster decision support for alternative investments across the program areas on the basis of a broad range of performance measures and against the background of the various alternative actions or spending amounts that could be applied to the several different asset types in the different program areas. The 2010 study also developed theoretical constructs for scaling and amalgamating the different performance measures, and for analyzing the different kinds of trade-offs. The research products from the present study include this technical report which shows how theoretical underpinnings of the methodology developed for INDOT in 2010 have been updated, upgraded, and refined. The report also includes a case study that shows how the trade-off analysis framework has been calibrated using available data. Supplemental to the report is Trade-IN Version 1.0, a set of flexible and easy-to-use spreadsheets that implement the tradeoff framework. With this framework and using data at the current time or in the future, INDOT’s asset managers are placed in a better position to quantify and comprehend the relationships between budget levels and system-wide performance, the relationships between different pairs of conflicting or non-conflicting performance measures under a given budget limit, and the consequences, in terms of system-wide performance, of funding shifts across the management systems or program areas

    Collocation Games and Their Application to Distributed Resource Management

    Full text link
    We introduce Collocation Games as the basis of a general framework for modeling, analyzing, and facilitating the interactions between the various stakeholders in distributed systems in general, and in cloud computing environments in particular. Cloud computing enables fixed-capacity (processing, communication, and storage) resources to be offered by infrastructure providers as commodities for sale at a fixed cost in an open marketplace to independent, rational parties (players) interested in setting up their own applications over the Internet. Virtualization technologies enable the partitioning of such fixed-capacity resources so as to allow each player to dynamically acquire appropriate fractions of the resources for unencumbered use. In such a paradigm, the resource management problem reduces to that of partitioning the entire set of applications (players) into subsets, each of which is assigned to fixed-capacity cloud resources. If the infrastructure and the various applications are under a single administrative domain, this partitioning reduces to an optimization problem whose objective is to minimize the overall deployment cost. In a marketplace, in which the infrastructure provider is interested in maximizing its own profit, and in which each player is interested in minimizing its own cost, it should be evident that a global optimization is precisely the wrong framework. Rather, in this paper we use a game-theoretic framework in which the assignment of players to fixed-capacity resources is the outcome of a strategic "Collocation Game". Although we show that determining the existence of an equilibrium for collocation games in general is NP-hard, we present a number of simplified, practically-motivated variants of the collocation game for which we establish convergence to a Nash Equilibrium, and for which we derive convergence and price of anarchy bounds. In addition to these analytical results, we present an experimental evaluation of implementations of some of these variants for cloud infrastructures consisting of a collection of multidimensional resources of homogeneous or heterogeneous capacities. Experimental results using trace-driven simulations and synthetically generated datasets corroborate our analytical results and also illustrate how collocation games offer a feasible distributed resource management alternative for autonomic/self-organizing systems, in which the adoption of a global optimization approach (centralized or distributed) would be neither practical nor justifiable.NSF (CCF-0820138, CSR-0720604, EFRI-0735974, CNS-0524477, CNS-052016, CCR-0635102); Universidad Pontificia Bolivariana; COLCIENCIAS–Instituto Colombiano para el Desarrollo de la Ciencia y la TecnologĂ­a "Francisco JosĂ© de Caldas

    A framework for understanding the factors influencing pair programming success

    Get PDF
    Pair programming is one of the more controversial aspects of several Agile system development methods, in particular eXtreme Programming (XP). Various studies have assessed factors that either drive the success or suggest advantages (and disadvantages) of pair programming. In this exploratory study the literature on pair programming is examined and factors distilled. These factors are then compared and contrasted with those discovered in our recent Delphi study of pair programming. Gallis et al. (2003) have proposed an initial framework aimed at providing a comprehensive identification of the major factors impacting team programming situations including pair programming. However, this study demonstrates that the framework should be extended to include an additional category of factors that relate to organizational matters. These factors will be further refined, and used to develop and empirically evaluate a conceptual model of pair programming (success)

    A study of set-sharing analysis via cliques

    Get PDF
    We study the problem of efficient, scalable set-sharing analysis of logic programs. We use the idea of representing sharing information as a pair of abstract substitutions, one of which is a worst-case sharing representation called a clique set, which was previously proposed for the case of inferring pair-sharing. We use the clique-set representation for (1) inferring actual set-sharing information, and (2) analysis within a top-down framework. In particular, we define the abstract functions required by standard top-down analyses, both for sharing alone and also for the case of including freeness in addition to sharing. Our experimental evaluation supports the conclusion that, for inferring set-sharing, as it was the case for inferring pair-sharing, precision losses are limited, while useful efficiency gains are obtained. At the limit, the clique-set representation allowed analyzing some programs that exceeded memory capacity using classical sharing representations.Comment: 15 pages, 0 figure
    • 

    corecore