4,487 research outputs found

    A Simple Baseline for Travel Time Estimation using Large-Scale Trip Data

    Full text link
    The increased availability of large-scale trajectory data around the world provides rich information for the study of urban dynamics. For example, New York City Taxi Limousine Commission regularly releases source-destination information about trips in the taxis they regulate. Taxi data provide information about traffic patterns, and thus enable the study of urban flow -- what will traffic between two locations look like at a certain date and time in the future? Existing big data methods try to outdo each other in terms of complexity and algorithmic sophistication. In the spirit of "big data beats algorithms", we present a very simple baseline which outperforms state-of-the-art approaches, including Bing Maps and Baidu Maps (whose APIs permit large scale experimentation). Such a travel time estimation baseline has several important uses, such as navigation (fast travel time estimates can serve as approximate heuristics for A search variants for path finding) and trip planning (which uses operating hours for popular destinations along with travel time estimates to create an itinerary).Comment: 12 page

    Crowdsourcing traffic data for travel time estimation

    Get PDF
    Travel time estimation is a fundamental measure used in routing and navigation applications, in particular in emerging intelligent transportation systems (ITS). For example, many users may prefer the fastest route to their destination and would rely on real-time predicted travel times. It also helps real-time traffic management and traffic light control. Accurate estimation of travel time requires collecting a lot of real-time data from road networks. This data can be collected using a wide variety of sources like inductive loop detectors, video cameras, radio frequency identification (RFID) transponders etc. But these systems include deployment of infrastructure which has some limitations and drawbacks. The main drawbacks in these modes are the high cost and the high probability of error caused by prevalence of equipment malfunctions and in the case of sensor based methods, the problem of spatial coverage.;As an alternative to traditional way of collecting data using expensive equipment, development of cellular & mobile technology allows for leveraging embedded GPS sensors in smartphones carried by millions of road users. Crowd-sourcing GPS data will allow building traffic monitoring systems that utilize this opportunity for the purpose of accurate and real-time prediction of traffic measures. However, the effectiveness of these systems have not yet been proven or shown in real applications. In this thesis, we study some of the current available data sets and identify the requirements for accurate prediction. In our work, we propose the design for a crowd-sourcing traffic application, including an android-based mobile client and a server architecture. We also develop map-matching method. More importantly, we present prediction methods using machine learning techniques such as support vector regression.;Machine learning provides an alternative to traditional statistical method such as using averaged historic data for estimation of travel time. Machine Learning techniques played a key role in estimation in the last two decades. They are proved by providing better accuracy in estimation and in classification. However, employing a machine learning technique in any application requires creative modeling of the system and its sensory data. In this thesis, we model the road network as a graph and train different models for different links on the road. Modeling a road network as graph with nodes and links enables the learner to capture patterns occurring on each segment of road, thereby providing better accuracy. To evaluate the prediction models, we use three sets of data out of which two sets are collected using mobile probing and one set is generated using VISSIM traffic simulator. The results show that crowdsourcing is only more accurate than traditional statistical methods if the input values for input data are very close to the actual values. In particular, when speed of vehicles on a link are concerned, we need to provide the machine learning model with data that is only few minutes old; using average speed of vehicles, for example from the past half hour, as is usually seen in many web based traffic information sources may not allow for better performance

    Patterns of mobility in a smart city

    Get PDF
    Transportation data in smart cities is becoming increasingly available. This data allows building meaningful, intelligent solutions for city residents and city management authorities, the so-called Intelligent Transportation Systems. Our research focused on Lisbon mobility data, provided by Lisbon municipality. The main research objective was to address mobility problems, interdependence, and cascading effects solutions for the city of Lisbon. We developed a data-driven approach based on historical data with a strong focus on visualization methods and dashboard creation. Also, we applied a method based on time series to do prediction based on the traffic congestion data provided. A CRISP-DM approach was applied, integrating different data sources, using Python. Hence, understand traffic patterns, and help the city authorities in the decision-making process, namely more preparedness, adaptability, responsiveness to events.Os dados de transporte, no âmbito das cidades inteligentes, estão cada vez mais disponíveis. Estes dados permitem a construção de soluções inteligentes com impacto significativo na vida dos residentes e nos mecanismos das autoridades de gestão da cidade, os chamados Sistemas de Transporte Inteligentes. A nossa investigação incidiu sobre os dados de mobilidade urbana da cidade de Lisboa, disponibilizados pelo município. O principal objetivo da pesquisa foi abordar os problemas de mobilidade, interdependência e soluções de efeitos em cascata para a cidade de Lisboa. Para alcançar este objetivo foi desenvolvida uma metodologia baseada nos dados históricos do transito no centro urbano da cidade e principais acessos, com uma forte componente de visualização. Foi também aplicado um método baseado em series temporais para fazer a previsão das ocorrências de transito na cidade de Lisboa. Foi aplicada uma abordagem CRISP-DM, integrando diferentes fontes de dados, utilizando Python. Esta tese tem como objetivo identificar padrões de mobilidade urbana com análise e visualização de dados, de forma a auxiliar as autoridades municipais no processo de tomada de decisão, nomeadamente estar mais preparada, adaptada e responsiva

    Global disease monitoring and forecasting with Wikipedia

    Full text link
    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data such as social media and search queries are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with r2r^2 up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.Comment: 27 pages; 4 figures; 4 tables. Version 2: Cite McIver & Brownstein and adjust novelty claims accordingly; revise title; various revisions for clarit

    Detection of traffic congestion and incidents from GPS trace analysis

    Get PDF
    This paper presents an expert system for detecting traffic congestion and incidents from real-time GPS data collected from GPS trackers or drivers’ smartphones. First, GPS traces are pre-processed and placed in the road map. Then, the system assigns to each road segment of the map a traffic state based on the speeds of the vehicles. Finally, it sends to the users traffic alerts based on a spatiotemporal analysis of the classified segments. Each traffic alert contains the affected area, a traffic state (e.g., incident, slowed traffic, blocked traffic), and the estimated velocity of vehicles in the area. The proposed system is intended to be a valuable support tool in traffic management for municipalities and citizens. The information produced by the system can be successfully employed to adopt actions for improving the city mobility, e.g., regulate vehicular traffic, or can be exploited by the users, who may spontaneously decide to modify their path in order to avoid the traffic jam. The elaboration performed by the expert system is independent of the context (urban o non-urban) and may be directly employed in several city road networks with almost no change of the system parameters, and without the need for a learning process or historical data. The experimental analysis was performed using a combination of simulated GPS data and real GPS data from the city of Pisa. The results on incidents show a detection rate of 91.6%, and an average detection time lower than 7 min. Regarding congestion, we show how the system is able to recognize different levels of congestion depending on different road use

    Fuzz sensoring

    Get PDF
    Treball desenvolupat en el marc del programa "European Project Semester".Traffic congestion is a significant problem which affects smoothness in transportation in many cities around the world. It is unavoidable due to increasing numbers of vehicles and overuse of roads in large and growing metropolises. Although, there are several policies that are implemented to reduce traffic congestion, such as improvement of public transport, car and motorcycle restriction on several roads, and an even-odd license plate policy, the major problem involves getting data in order to predict and avoid traffic. Information can be collected from many sources such as: city sensors, GPS, as well as, from many application programming interfaces (API) provided by different companies. The project involves gathering sources and information about traffic congestion in order to create guidelines which can be essential in creating a traffic map of Vilanova i la Geltrú in the future. Eventually, the guidelines to the city of Vilanova i la Geltrú are provided, consisting of analysis of traffic inside the city, IoT management, choices of APIs, effective selection of sensors, and cost analysis to vastly improve traffic flow.Incomin

    Integration of Naturalistic Driving Characteristics into Crash Forecasting Models

    Get PDF
    While highway safety has steadily improved throughout the United States, highway crashes and the resulting losses continue to be a significant concern in Louisiana. Louisiana consistently lags behind the country in many key areas of highway safety. To improve the conditions of roads in Louisiana, the Louisiana Department of Transportation and Development (LADOTD) has begun to implement the Highway Safety Manual (HSM) to evaluate existing and expected safety conditions and how to allocate limited improvement funds. However, as the HSM was developed using aggregated national statistics, it is not always able to reflect the conditions present on specific Louisiana roadways. The goal of this research was to address the limitations of applying the HSM predictive method in Louisiana, by creating and testing an HSM crash modification factor (CMF) founded on naturalistic driving behavior. The intent of this new CMF was to identify abrupt braking and evasive maneuvers in specific freeway segments because these conditions have been demonstrated to be strong predictors of high crash potential. The CMF was applied to the HSM predictive method to more accurately and reliably forecast crashes on Louisiana freeways. This research was conducted on freeway segments in Baton Rouge and showed that naturalistic driving behavior correlated with the HSM predicted crash frequency and also demonstrated that use of the crash modification factor affects the predicted crash frequency
    • …
    corecore