20 research outputs found

    A Taxonomy on Misbehaving Nodes in Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) are type of Intermittently Connected Networks (ICNs) featured by long delay, intermittent connectivity, asymmetric data rates and high error rates. DTNs have been primarily developed for InterPlanetary Networks (IPNs), however, have shown promising potential in challenged networks i.e. DakNet, ZebraNet, KioskNet and WiderNet. Due to unique nature of intermittent connectivity and long delay, DTNs face challenges in routing, key management, privacy, fragmentation and misbehaving nodes. Here, misbehaving nodes i.e. malicious and selfish nodes launch various attacks including flood, packet drop and fake packets attack, inevitably overuse scarce resources (e.g., buffer and bandwidth) in DTNs. The focus of this survey is on a review of misbehaving node attacks, and detection algorithms. We firstly classify various of attacks depending on the type of misbehaving nodes. Then, detection algorithms for these misbehaving nodes are categorized depending on preventive and detective based features. The panoramic view on misbehaving nodes and detection algorithms are further analyzed, evaluated mathematically through a number of performance metrics. Future directions guiding this topic are also presented

    Efficiency and Accuracy Enhancement of Intrusion Detection System Using Feature Selection and Cross-layer Mechanism

    Get PDF
    The dramatic increase in the number of connected devices and the significant growth of the network traffic data have led to many security vulnerabilities and cyber-attacks. Hence, developing new methods to secure the network infrastructure and protect data from malicious and unauthorized access becomes a vital aspect of communication network design. Intrusion Detection Systems (IDSs), as common widely used security techniques, are critical to detect network attacks and unauthorized network access and thus minimize further cyber-attack damages. However, there are a number of weaknesses that need to be addressed to make reliable IDS for real-world applications. One of the fundamental challenges is the large number of redundant and non-relevant data. Feature selection emerges as a necessary step in efficient IDS design to overcome high dimensionality problem and enhance the performance of IDS through the reduction of its complexity and the acceleration of the detection process. Moreover, detection algorithm has significant impact on the performance of IDS. Machine learning techniques are widely used in such systems which is studied in details in this dissertation. One of the most destructive activities in wireless networks such as MANET is packet dropping. The existence of the intrusive attackers in the network is not the only cause of packet loss. In fact, packet drop can occur because of faulty network. Hence, in order detect the packet dropping caused by a malicious activity of an attacker, information from various layers of the protocol is needed to detect malicious packet loss effectively. To this end, a novel cross-layer design for malicious packet loss detection in MANET is proposed using features from physical layer, network layer and MAC layer to make a better detection decision. Trust-based mechanism is adopted in this design and a packet loss free routing algorithm is presented accordingly

    Wide-Area Situation Awareness based on a Secure Interconnection between Cyber-Physical Control Systems

    Get PDF
    Posteriormente, examinamos e identificamos los requisitos especiales que limitan el diseño y la operación de una arquitectura de interoperabilidad segura para los SSC (particularmente los SCCF) del smart grid. Nos enfocamos en modelar requisitos no funcionales que dan forma a esta infraestructura, siguiendo la metodología NFR para extraer requisitos esenciales, técnicas para la satisfacción de los requisitos y métricas para nuestro modelo arquitectural. Estudiamos los servicios necesarios para la interoperabilidad segura de los SSC del SG revisando en profundidad los mecanismos de seguridad, desde los servicios básicos hasta los procedimientos avanzados capaces de hacer frente a las amenazas sofisticadas contra los sistemas de control, como son los sistemas de detección, protección y respuesta ante intrusiones. Nuestro análisis se divide en diferentes áreas: prevención, consciencia y reacción, y restauración; las cuales general un modelo de seguridad robusto para la protección de los sistemas críticos. Proporcionamos el diseño para un modelo arquitectural para la interoperabilidad segura y la interconexión de los SCCF del smart grid. Este escenario contempla la interconectividad de una federación de proveedores de energía del SG, que interactúan a través de la plataforma de interoperabilidad segura para gestionar y controlar sus infraestructuras de forma cooperativa. La plataforma tiene en cuenta las características inherentes y los nuevos servicios y tecnologías que acompañan al movimiento de la Industria 4.0. Por último, presentamos una prueba de concepto de nuestro modelo arquitectural, el cual ayuda a validar el diseño propuesto a través de experimentaciones. Creamos un conjunto de casos de validación que prueban algunas de las funcionalidades principales ofrecidas por la arquitectura diseñada para la interoperabilidad segura, proporcionando información sobre su rendimiento y capacidades.Las infraestructuras críticas (IICC) modernas son vastos sistemas altamente complejos, que precisan del uso de las tecnologías de la información para gestionar, controlar y monitorizar el funcionamiento de estas infraestructuras. Debido a sus funciones esenciales, la protección y seguridad de las infraestructuras críticas y, por tanto, de sus sistemas de control, se ha convertido en una tarea prioritaria para las diversas instituciones gubernamentales y académicas a nivel mundial. La interoperabilidad de las IICC, en especial de sus sistemas de control (SSC), se convierte en una característica clave para que estos sistemas sean capaces de coordinarse y realizar tareas de control y seguridad de forma cooperativa. El objetivo de esta tesis se centra, por tanto, en proporcionar herramientas para la interoperabilidad segura de los diferentes SSC, especialmente los sistemas de control ciber-físicos (SCCF), de forma que se potencie la intercomunicación y coordinación entre ellos para crear un entorno en el que las diversas infraestructuras puedan realizar tareas de control y seguridad cooperativas, creando una plataforma de interoperabilidad segura capaz de dar servicio a diversas IICC, en un entorno de consciencia situacional (del inglés situational awareness) de alto espectro o área (wide-area). Para ello, en primer lugar, revisamos las amenazas de carácter más sofisticado que amenazan la operación de los sistemas críticos, particularmente enfocándonos en los ciberataques camuflados (del inglés stealth) que amenazan los sistemas de control de infraestructuras críticas como el smart grid. Enfocamos nuestra investigación al análisis y comprensión de este nuevo tipo de ataques que aparece contra los sistemas críticos, y a las posibles contramedidas y herramientas para mitigar los efectos de estos ataques

    A dynamic trust and mutual authentication scheme for MANET security

    Get PDF
    MANETs are attractive technology in providing communication in the absence of a fixed infrastructure for applications such as, first responders at a disaster site or soldiers in a battlefield (Kumar, and Mishra, 2012). The rapid growth MANET has experienced in recent years is due to its Ad Hoc capabilities that have also made it prime target of cybercrimes (Jhaveri, 2012). This has raised the question of how could we embrace the benefits of MANET without the increased security risks. MANETs have several vulnerabilities such as lack of a central point, mobility, wireless links, limited energy resources, a lack of clear line of defence, cooperative nature and non-secure communication to mention a few. This research proposes a two-phase scheme. In phase-one a novel approach is suggested by using concept of exiting trust schemes and adopting the use of Dynamic Trust Threshold Scheme (DTTS) for the selection of trusted nodes in the network and using mutual trust acknowledgement scheme of neighbour nodes to authenticate two communicating nodes. The notion of trust is used for authenticating peer nodes. The trust scheme algorithm is based on real time network dynamics, relevant to MANET conditions, as opposed to pre-determined static values. The phase-one is implemented in AODV and tested in a simulated environment using NS2. The reason for using AODV is that it’s reactive and has comparatively low routing overhead, low energy consumption and relatively better performance (Morshed, et al 2010). In order to ensure data confidentiality and end-to-end security, in phase-two, the source and destination generates a shared secret key to communicate with each other using a highly efficient Diffie Hellman Elliptic Curve scheme (Wang, Ramamurthy and Zou, 2006). The shared key is used to encrypt data between the peer nodes

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Security in Internet of Things: networked smart objects.

    Get PDF
    Internet of Things (IoT) is an innovative paradigm approaching both industries and humans every-day life. It refers to the networked interconnection of every-day objects, which are equipped with ubiquitous intelligence. It not only aims at increasing the ubiquity of the Internet, but also at leading towards a highly distributed network of devices communicating with human beings as well as with other devices. Thanks to rapid advances in underlying technologies, IoT is opening valuable opportunities for a large number of novel applications, that promise to improve the quality of humans lives, facilitating the exchange of services. In this scenario, security represents a crucial aspect to be addressed, due to the high level of heterogeneity of the involved devices and to the sensibility of the managed information. Moreover, a system architecture should be established, before the IoT is fully operable in an efficient, scalable and interoperable manner. The main goal of this PhD thesis concerns the design and the implementation of a secure and distributed middleware platform tailored to IoT application domains. The effectiveness of the proposed solution is evaluated by means of a prototype and real case studies

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Tracking and Mitigation of Malicious Remote Control Networks

    Full text link
    Attacks against end-users are one of the negative side effects of today’s networks. The goal of the attacker is to compromise the victim’s machine and obtain control over it. This machine is then used to carry out denial-of-service attacks, to send out spam mails, or for other nefarious purposes. From an attacker’s point of view, this kind of attack is even more efficient if she manages to compromise a large number of machines in parallel. In order to control all these machines, she establishes a "malicious remote control network", i.e., a mechanism that enables an attacker the control over a large number of compromised machines for illicit activities. The most common type of these networks observed so far are so called "botnets". Since these networks are one of the main factors behind current abuses on the Internet, we need to find novel approaches to stop them in an automated and efficient way. In this thesis we focus on this open problem and propose a general root cause methodology to stop malicious remote control networks. The basic idea of our method consists of three steps. In the first step, we use "honeypots" to collect information. A honeypot is an information system resource whose value lies in unauthorized or illicit use of that resource. This technique enables us to study current attacks on the Internet and we can for example capture samples of autonomous spreading malware ("malicious software") in an automated way. We analyze the collected data to extract information about the remote control mechanism in an automated fashion. For example, we utilize an automated binary analysis tool to find the Command & Control (C&C) server that is used to send commands to the infected machines. In the second step, we use the extracted information to infiltrate the malicious remote control networks. This can for example be implemented by impersonating as a bot and infiltrating the remote control channel. Finally, in the third step we use the information collected during the infiltration phase to mitigate the network, e.g., by shutting down the remote control channel such that the attacker cannot send commands to the compromised machines. In this thesis we show the practical feasibility of this method. We examine different kinds of malicious remote control networks and discuss how we can track all of them in an automated way. As a first example, we study botnets that use a central C&C server: We illustrate how the three steps can be implemented in practice and present empirical measurement results obtained on the Internet. Second, we investigate botnets that use a peer-to-peer based communication channel. Mitigating these botnets is harder since no central C&C server exists which could be taken offline. Nevertheless, our methodology can also be applied to this kind of networks and we present empirical measurement results substantiating our method. Third, we study fast-flux service networks. The idea behind these networks is that the attacker does not directly abuse the compromised machines, but uses them to establish a proxy network on top of these machines to enable a robust hosting infrastructure. Our method can be applied to this novel kind of malicious remote control networks and we present empirical results supporting this claim. We anticipate that the methodology proposed in this thesis can also be used to track and mitigate other kinds of malicious remote control networks
    corecore