1,478 research outputs found

    Design of Recognition and Evaluation System for Table Tennis Players' Motor Skills Based on Artificial Intelligence

    Full text link
    With the rapid development of electronic science and technology, the research on wearable devices is constantly updated, but for now, it is not comprehensive for wearable devices to recognize and analyze the movement of specific sports. Based on this, this paper improves wearable devices of table tennis sport, and realizes the pattern recognition and evaluation of table tennis players' motor skills through artificial intelligence. Firstly, a device is designed to collect the movement information of table tennis players and the actual movement data is processed. Secondly, a sliding window is made to divide the collected motion data into a characteristic database of six table tennis benchmark movements. Thirdly, motion features were constructed based on feature engineering, and motor skills were identified for different models after dimensionality reduction. Finally, the hierarchical evaluation system of motor skills is established with the loss functions of different evaluation indexes. The results show that in the recognition of table tennis players' motor skills, the feature-based BP neural network proposed in this paper has higher recognition accuracy and stronger generalization ability than the traditional convolutional neural network.Comment: 34pages, 16figure

    Application of Artificial Intelligence in Basketball Sport

    Get PDF
    Basketball is among the most popular sports in the world, and its related industries have also produced huge economic benefits. In recent years, the application of artificial intelligence (AI) technology in basketball has attracted a large amount of attention. We conducted a comprehensive review of the application research of AI in basketball through literature retrieval. Current research focuses on the AI analysis of basketball team and player performance, prediction of competition results, analysis and prediction of shooting, AI coaching system, intelligent training machine and arena, and sports injury prevention. Most studies have shown that AI technology can improve the training level of basketball players, help coaches formulate suitable game strategies, prevent sports injuries, and improve the enjoyment of games. At the same time, it is also found that the number and level of published papers are relatively limited. We believe that the application of AI in basketball is still in its infancy. We call on relevant industries to increase their research investment in this area, and promote the improvement of the level of basketball, making the game increasingly exciting as its worldwide popularity continues to increase

    Anomaly Detection, Rule Adaptation and Rule Induction Methodologies in the Context of Automated Sports Video Annotation.

    Get PDF
    Automated video annotation is a topic of considerable interest in computer vision due to its applications in video search, object based video encoding and enhanced broadcast content. The domain of sport broadcasting is, in particular, the subject of current research attention due to its fixed, rule governed, content. This research work aims to develop, analyze and demonstrate novel methodologies that can be useful in the context of adaptive and automated video annotation systems. In this thesis, we present methodologies for addressing the problems of anomaly detection, rule adaptation and rule induction for court based sports such as tennis and badminton. We first introduce an HMM induction strategy for a court-model based method that uses the court structure in the form of a lattice for two related modalities of singles and doubles tennis to tackle the problems of anomaly detection and rectification. We also introduce another anomaly detection methodology that is based on the disparity between the low-level vision based classifiers and the high-level contextual classifier. Another approach to address the problem of rule adaptation is also proposed that employs Convex hulling of the anomalous states. We also investigate a number of novel hierarchical HMM generating methods for stochastic induction of game rules. These methodologies include, Cartesian product Label-based Hierarchical Bottom-up Clustering (CLHBC) that employs prior information within the label structures. A new constrained variant of the classical Chinese Restaurant Process (CRP) is also introduced that is relevant to sports games. We also propose two hybrid methodologies in this context and a comparative analysis is made against the flat Markov model. We also show that these methods are also generalizable to other rule based environments

    Badminton activity recognition using accelerometer data

    Get PDF
    A thorough analysis of sports is becoming increasingly important during the training process of badminton players at both the recreational and professional level. Nowadays, game situations are usually filmed and reviewed afterwards in order to analyze the game situation, but these video set-ups tend to be difficult to analyze, expensive, and intrusive to set up. In contrast, we classified badminton movements using off-the-shelf accelerometer and gyroscope data. To this end, we organized a data capturing campaign and designed a novel neural network using different frame sizes as input. This paper shows that with only accelerometer data, our novel convolutional neural network is able to distinguish nine activities with 86% precision when using a sampling frequency of 50 Hz. Adding the gyroscope data causes an increase of up to 99% precision, as compared to, respectively, 79% and 88% when using a traditional convolutional neural network. In addition, our paper analyses the impact of different sensor placement options and discusses the impact of different sampling frequenciess of the sensors. As such, our approach provides a low cost solution that is easy to use and can collect useful information for the analysis of a badminton game

    Proceedings of Mathsport international 2017 conference

    Get PDF
    Proceedings of MathSport International 2017 Conference, held in the Botanical Garden of the University of Padua, June 26-28, 2017. MathSport International organizes biennial conferences dedicated to all topics where mathematics and sport meet. Topics include: performance measures, optimization of sports performance, statistics and probability models, mathematical and physical models in sports, competitive strategies, statistics and probability match outcome models, optimal tournament design and scheduling, decision support systems, analysis of rules and adjudication, econometrics in sport, analysis of sporting technologies, financial valuation in sport, e-sports (gaming), betting and sports

    Vision Based Activity Recognition Using Machine Learning and Deep Learning Architecture

    Get PDF
    Human Activity recognition, with wide application in fields like video surveillance, sports, human interaction, elderly care has shown great influence in upbringing the standard of life of people. With the constant development of new architecture, models, and an increase in the computational capability of the system, the adoption of machine learning and deep learning for activity recognition has shown great improvement with high performance in recent years. My research goal in this thesis is to design and compare machine learning and deep learning models for activity recognition through videos collected from different media in the field of sports. Human activity recognition (HAR) mostly is to recognize the action performed by a human through the data collected from different sources automatically. Based on the literature review, most data collected for analysis is based on time series data collected through different sensors and video-based data collected through the camera. So firstly, our research analyzes and compare different machine learning and deep learning architecture with sensor-based data collected from an accelerometer of a smartphone place at different position of the human body. Without any hand-crafted feature extraction methods, we found that deep learning architecture outperforms most of the machine learning architecture and the use of multiple sensors has higher accuracy than a dataset collected from a single sensor. Secondly, as collecting data from sensors in real-time is not feasible in all the fields such as sports, we study the activity recognition by using the video dataset. For this, we used two state-of-the-art deep learning architectures previously trained on the big, annotated dataset using transfer learning methods for activity recognition in three different sports-related publicly available datasets. Extending the study to the different activities performed on a single sport, and to avoid the current trend of using special cameras and expensive set up around the court for data collection, we developed our video dataset using sports coverage of basketball games broadcasted through broadcasting media. The detailed analysis and experiments based on different criteria such as range of shots taken, scoring activities is presented for 8 different activities using state-of-art deep learning architecture for video classification

    Biomechanical analysis and model development applied to table tennis forehand strokes

    Get PDF
    Table tennis playing involves complex spatial movement of the racket and human body. It takes much effort for the novice players to better mimic expert players. The evaluation of motion patterns during table tennis training, which is usually achieved by coaches, is important for novice trainees to improve faster. However, traditional coaching relies heavily on coaches qualitative observation and subjective evaluation. While past literature shows considerable potential in applying biomechanical analysis and classification for motion pattern assessment to improve novice table tennis players, little published work was found on table tennis biomechanics. To attempt to overcome the problems and fill the gaps, this research aims to quantify the movement of table tennis strokes, to identify the motion pattern differences between experts and novices, and to develop a model for automatic evaluation of the motion quality for an individual. Firstly, a novel method for comprehensive quantification and measurement of the kinematic motion of racket and human body is proposed. In addition, a novel method based on racket centre velocity profile is proposed to segment and normalize the motion data. Secondly, a controlled experiment was conducted to collect motion data of expert and novice players during forehand strokes. Statistical analysis was performed to determine the motion differences between the expert and the novice groups. The experts exhibited significantly different motion patterns with faster racket centre velocity and smaller racket plane angle, different standing posture and joint angular velocity, etc. Lastly, a support vector machine (SVM) classification technique was employed to build a model for motion pattern evaluation. The model development was based on experimental data with different feature selection methods and SVM kernels to achieve the best performance (F1 score) through cross-validated and Nelder-Mead method. Results showed that the SVM classification model exhibited good performance with an average model performance above 90% in distinguishing the stroke motion between expert and novice players. This research helps to better understand the biomechanical mechanisms of table tennis strokes, which will ultimately aid the improvement of novice players. The phase segmentation and normalization methods for table tennis strokes are novel, unambiguous and straightforward to apply. The quantitative comparison identified the comprehensive differences in motion between experts and novice players for racket and human body in continuous phase time, which is a novel contribution. The proposed classification model shows potential in the application of SVM to table tennis biomechanics and can be exploited for automatic coaching

    Game Theory Solutions in Sensor-Based Human Activity Recognition: A Review

    Full text link
    The Human Activity Recognition (HAR) tasks automatically identify human activities using the sensor data, which has numerous applications in healthcare, sports, security, and human-computer interaction. Despite significant advances in HAR, critical challenges still exist. Game theory has emerged as a promising solution to address these challenges in machine learning problems including HAR. However, there is a lack of research work on applying game theory solutions to the HAR problems. This review paper explores the potential of game theory as a solution for HAR tasks, and bridges the gap between game theory and HAR research work by suggesting novel game-theoretic approaches for HAR problems. The contributions of this work include exploring how game theory can improve the accuracy and robustness of HAR models, investigating how game-theoretic concepts can optimize recognition algorithms, and discussing the game-theoretic approaches against the existing HAR methods. The objective is to provide insights into the potential of game theory as a solution for sensor-based HAR, and contribute to develop a more accurate and efficient recognition system in the future research directions

    Human motion analysis and simulation tools: a survey

    Get PDF
    Computational systems to identify objects represented in image sequences and tracking their motion in a fully automatic manner, enabling a detailed analysis of the involved motion and its simulation are extremely relevant in several fields of our society. In particular, the analysis and simulation of the human motion has a wide spectrum of relevant applications with a manifest social and economic impact. In fact, usage of human motion data is fundamental in a broad number of domains (e.g.: sports, rehabilitation, robotics, surveillance, gesture-based user interfaces, etc.). Consequently, many relevant engineering software applications have been developed with the purpose of analyzing and/or simulating the human motion. This chapter presents a detailed, broad and up to date survey on motion simulation and/or analysis software packages that have been developed either by the scientific community or commercial entities. Moreover, a main contribution of this chapter is an effective framework to classify and compare motion simulation and analysis tools

    Joint-SRVDNet: Joint Super Resolution and Vehicle Detection Network

    Get PDF
    In many domestic and military applications, aerial vehicle detection and super-resolutionalgorithms are frequently developed and applied independently. However, aerial vehicle detection on super-resolved images remains a challenging task due to the lack of discriminative information in the super-resolved images. To address this problem, we propose a Joint Super-Resolution and Vehicle DetectionNetwork (Joint-SRVDNet) that tries to generate discriminative, high-resolution images of vehicles fromlow-resolution aerial images. First, aerial images are up-scaled by a factor of 4x using a Multi-scaleGenerative Adversarial Network (MsGAN), which has multiple intermediate outputs with increasingresolutions. Second, a detector is trained on super-resolved images that are upscaled by factor 4x usingMsGAN architecture and finally, the detection loss is minimized jointly with the super-resolution loss toencourage the target detector to be sensitive to the subsequent super-resolution training. The network jointlylearns hierarchical and discriminative features of targets and produces optimal super-resolution results. Weperform both quantitative and qualitative evaluation of our proposed network on VEDAI, xView and DOTAdatasets. The experimental results show that our proposed framework achieves better visual quality than thestate-of-the-art methods for aerial super-resolution with 4x up-scaling factor and improves the accuracy ofaerial vehicle detection
    corecore