18,775 research outputs found

    Analyzing lead information from SAR images

    Get PDF
    ©1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.Leads are relatively linear features in the sea ice cover, which are composed of open water or new, thin ice, Because of their composition, leads impact the ocean/air heat exchange, Automated analysis of leads from sea ice imagery may provide a means of gathering important information about the sea ice cover and its climatic influence, This paper describes: 1) a method for extracting and analyzing leads from ERS-1 synthetic aperture radar (SAR) images classified by ice type and 2) the results of using this method on images of the Beaufort Sea, The methodology consists of identifying potential lead features in the image and measuring their characteristics both before and after using a thinning or skeletonization technique on the features. The measurements obtained using this method include lead area, average width, number of leads in an area, amount of branching, and linearity of the lead, These measurements were analyzed with respect to the time of year and the latitude of the images. Results indicate that the measurements produced by the methodology are consistent with lead measurement distributions that others have found, The results of the study suggest that the methodology is appropriate to study lead characteristics on a large scale

    Change detection in SAR time-series based on the coefficient of variation

    Full text link
    This paper discusses change detection in SAR time-series. Firstly, several statistical properties of the coefficient of variation highlight its pertinence for change detection. Then several criteria are proposed. The coefficient of variation is suggested to detect any kind of change. Then other criteria based on ratios of coefficients of variations are proposed to detect long events such as construction test sites, or point-event such as vehicles. These detection methods are evaluated first on theoretical statistical simulations to determine the scenarios where they can deliver the best results. Then detection performance is assessed on real data for different types of scenes and sensors (Sentinel-1, UAVSAR). In particular, a quantitative evaluation is performed with a comparison of our solutions with state-of-the-art methods

    Long-term monitoring of geodynamic surface deformation using SAR interferometry

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2014Synthetic Aperture Radar Interferometry (InSAR) is a powerful tool to measure surface deformation and is well suited for surveying active volcanoes using historical and existing satellites. However, the value and applicability of InSAR for geodynamic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations in the atmosphere, both of which reduce the sensitivity and accuracy of the technique. The aim of this PhD thesis research is: how to optimize the quantity and quality of deformation signals extracted from InSAR stacks that contain only a low number of images in order to facilitate volcano monitoring and the study of their geophysical signatures. In particular, the focus is on methods of mitigating atmospheric artifacts in interferograms by combining time-series InSAR techniques and external atmospheric delay maps derived by Numerical Weather Prediction (NWP) models. In the first chapter of the thesis, the potential of the NWP Weather Research & Forecasting (WRF) model for InSAR data correction has been studied extensively. Forecasted atmospheric delays derived from operational High Resolution Rapid Refresh for the Alaska region (HRRRAK) products have been compared to radiosonding measurements in the first chapter. The result suggests that the HRRR-AK operational products are a good data source for correcting atmospheric delays in spaceborne geodetic radar observations, if the geophysical signal to be observed is larger than 20 mm. In the second chapter, an advanced method for integrating NWP products into the time series InSAR workflow is developed. The efficiency of the algorithm is tested via simulated data experiments, which demonstrate the method outperforms other more conventional methods. In Chapter 3, a geophysical case study is performed by applying the developed algorithm to the active volcanoes of Unimak Island Alaska (Westdahl, Fisher and Shishaldin) for long term volcano deformation monitoring. The volcano source location at Westdahl is determined to be approx. 7 km below sea level and approx. 3.5 km north of the Westdahl peak. This study demonstrates that Fisher caldera has had continuous subsidence over more than 10 years and there is no evident deformation signal around Shishaldin peak.Chapter 1. Performance of the High Resolution Atmospheric Model HRRR-AK for Correcting Geodetic Observations from Spaceborne Radars -- Chapter 2. Robust atmospheric filtering of InSAR data based on numerical weather prediction models -- Chapter 3. Subtle motion long term monitoring of Unimak Island from 2003 to 2010 by advanced time series SAR interferometry -- Chapter 4. Conclusion and future work

    Offshore Metallic Platforms Observation Using Dual-Polarimetric TS-X/TD-X Satellite Imagery: A Case Study in the Gulf of Mexico

    Get PDF
    Satellite-based synthetic aperture radar (SAR) has been proven to be an effective tool for ship monitoring. Offshore platforms monitoring is a key topic for both safety and security of the maritime domain. However, the scientific literature oriented to the observation of offshore platforms using SAR imagery is very limited. This study is mostly focused on the analysis and understanding of the multipolarization behavior of platforms’ backscattering using dual-polarization X-band SAR imagery. This study is motivated by the fact that under low incidence angle and moderate wind conditions, copolarized channels may fail in detecting offshore platforms even when fine-resolution imagery is considered. This behavior has been observed on both medium- and high-resolution TerraSAR-X/TanDEM-X SAR imagery, despite the fact that platforms consist of large metallic structures. Hence, a simple multipolarization model is proposed to analyze the platform backscattering. Model predictions are verified on TerraSAR-X/TanDEM-X SAR imagery, showing that for acquisitions under low incidence angle, the platforms result in a reduced copolarized backscattered intensity even when fine resolution imagery is considered. Finally, several solutions to tackle this issue are proposed with concluding remark that the performance of offshore observation

    Digital image correlation (DIC) analysis of the 3 December 2013 Montescaglioso landslide (Basilicata, Southern Italy). Results from a multi-dataset investigation

    Get PDF
    Image correlation remote sensing monitoring techniques are becoming key tools for providing effective qualitative and quantitative information suitable for natural hazard assessments, specifically for landslide investigation and monitoring. In recent years, these techniques have been successfully integrated and shown to be complementary and competitive with more standard remote sensing techniques, such as satellite or terrestrial Synthetic Aperture Radar interferometry. The objective of this article is to apply the proposed in-depth calibration and validation analysis, referred to as the Digital Image Correlation technique, to measure landslide displacement. The availability of a multi-dataset for the 3 December 2013 Montescaglioso landslide, characterized by different types of imagery, such as LANDSAT 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor), high-resolution airborne optical orthophotos, Digital Terrain Models and COSMO-SkyMed Synthetic Aperture Radar, allows for the retrieval of the actual landslide displacement field at values ranging from a few meters (2–3 m in the north-eastern sector of the landslide) to 20–21 m (local peaks on the central body of the landslide). Furthermore, comprehensive sensitivity analyses and statistics-based processing approaches are used to identify the role of the background noise that affects the whole dataset. This noise has a directly proportional relationship to the different geometric and temporal resolutions of the processed imagery. Moreover, the accuracy of the environmental-instrumental background noise evaluation allowed the actual displacement measurements to be correctly calibrated and validated, thereby leading to a better definition of the threshold values of the maximum Digital Image Correlation sub-pixel accuracy and reliability (ranging from 1/10 to 8/10 pixel) for each processed dataset

    Breaking new ground in mapping human settlements from space -The Global Urban Footprint-

    Full text link
    Today 7.2 billion people inhabit the Earth and by 2050 this number will have risen to around nine billion, of which about 70 percent will be living in cities. Hence, it is essential to understand drivers, dynamics, and impacts of the human settlements development. A key component in this context is the availability of an up-to-date and spatially consistent map of the location and distribution of human settlements. It is here that the Global Urban Footprint (GUF) raster map can make a valuable contribution. The new global GUF binary settlement mask shows a so far unprecedented spatial resolution of 0.4 arcsec (12m\sim12 m) that provides - for the first time - a complete picture of the entirety of urban and rural settlements. The GUF has been derived by means of a fully automated processing framework - the Urban Footprint Processor (UFP) - that was used to analyze a global coverage of more than 180,000 TanDEM-X and TerraSAR-X radar images with 3m ground resolution collected in 2011-2012. Various quality assessment studies to determine the absolute GUF accuracy based on ground truth data on the one hand and the relative accuracies compared to established settlements maps on the other hand, clearly indicate the added value of the new global GUF layer, in particular with respect to the representation of rural settlement patterns. Generally, the GUF layer achieves an overall absolute accuracy of about 85\%, with observed minima around 65\% and maxima around 98 \%. The GUF will be provided open and free for any scientific use in the full resolution and for any non-profit (but also non-scientific) use in a generalized version of 2.8 arcsec (84m\sim84m). Therewith, the new GUF layer can be expected to break new ground with respect to the analysis of global urbanization and peri-urbanization patterns, population estimation or vulnerability assessment

    High-resolution optical and SAR image fusion for building database updating

    Get PDF
    This paper addresses the issue of cartographic database (DB) creation or updating using high-resolution synthetic aperture radar and optical images. In cartographic applications, objects of interest are mainly buildings and roads. This paper proposes a processing chain to create or update building DBs. The approach is composed of two steps. First, if a DB is available, the presence of each DB object is checked in the images. Then, we verify if objects coming from an image segmentation should be included in the DB. To do those two steps, relevant features are extracted from images in the neighborhood of the considered object. The object removal/inclusion in the DB is based on a score obtained by the fusion of features in the framework of Dempster–Shafer evidence theory
    corecore