749 research outputs found

    Ruhoff, Peder Thusgaard

    Get PDF

    An Overview Methodology for Writing Suitable Boolean Rules for Protein Signaling Pathways

    Get PDF
    Boolean model elaborates discrete modelling of any biological system with the purpose to study its dynamical evolution. The representative network has been composed of nodes and edges that show the way of interactions between these nodes. The modelling consists of a set of logical functions, known as Boolean functions that represent the interactions between nodes, and are simulated to determine all attractors of the system, and consequently, its stable states are stated as fixed points. In this paper, we give a description of the methodology followed to write Boolean functions. We present two different Boolean models constructed by these two methods and the differences shown in the results they simulate. In a situation where experimental data are missing, the functions have been usually written under prediction and assumptions made for this occasion, because the path followed by the information to jump from one node to another was considered mandatory for the first Boolean model. Differently, in the second Boolean model activators and inhibitors are considered separately without any restriction, as in the first method. Here, the type of interactions was considered important, because we are interested to know only what flows in and out from any target node. The methodology has been applied firstly in a hypothetical representative system and then in four real signalling pathways. We have identified many differences in the simulated fixed points and concluded that the second model offers more results for further analysis. Consequently, there is a higher probability that we find, through second Boolean modelling, more suitable stable states that correspond to the biology

    Of Mice and Math: A Systems Biology Model for Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the US, affecting over 1 in 8 people over the age of 65. There are several well-known pathological changes in the brains of AD patients, namely: the presence of diffuse beta amyloid plaques derived from the amyloid precursor protein (APP), hyper-phosphorylated tau protein, neuroinflammation and mitochondrial dysfunction. Recent studies have shown that cholesterol levels in both the plasma and the brain may play a role in disease pathogenesis, however, this exact role is not well understood. Additional proteins of interest have also been identified (ApoE, LRP-1, IL-1) as possible contributors to AD pathogenesis. To help understand these roles better, a systems biology mathematical model was developed. Basic principles from graph theory and control analysis were used to study the effect of altered cholesterol, ApoE, LRP and APP on the system as a whole. Negative feedback regulation and the rate of cholesterol transfer between astrocytes and neurons were identified as key modulators in the level of beta amyloid. Experiments were run concurrently to test whether decreasing plasma and brain cholesterol levels with simvastatin altered the expression levels of beta amyloid, ApoE, and LRP-1, to ascertain the edge directions in the network model and to better understand whether statin treatment served as a viable treatment option for AD patients. The work completed herein represents the first attempt to create a systems-level mathematical model to study AD that looks at intercellular interactions, as well as interactions between metabolic and inflammatory pathways

    Rhythmogenic and Premotor Functions of Dbx1 Interneurons in the Pre-Bötzinger Complex and Reticular Formation: Modeling and Simulation Studies

    Get PDF
    Breathing in mammals depends on rhythms that originate from the preBötzinger complex (preBötC) of the ventral medulla and a network of brainstem and spinal premotor neurons. The rhythm-generating core of the preBötC, as well as some premotor circuits, consists of interneurons derived from Dbx1-expressing precursors but the structure and function of these networks remain incompletely understood. We previously developed a cell-specific detection and laser ablation system to interrogate respiratory network structure and function in a slice model of breathing that retains the preBötC, premotor circuits, and the respiratory related hypoglossal (XII) motor nucleus such that in spontaneously rhythmic slices, cumulative ablation of Dbx1 preBötC neurons decreased XII motor output by half after only a few cell deletions, and then decelerated and terminated rhythmic function altogether as the tally increased. In contrast, cumulatively deleting Dbx1 premotor neurons decreased XII motor output monotonically, but did not affect frequency nor stop functionality regardless of the ablation tally. This dissertation presents several network modeling and cellular modeling studies that would further our understanding of how respiratory rhythm is generated and transmitted to the XII motor nucleus. First, we propose that cumulative deletions of Dbx1 preBötC neurons preclude rhythm by diminishing the amount of excitatory inward current or disturbing the process of recurrent excitation rather than structurally breaking down the topological network. Second, we establish a feasible configuration for neural circuits including an Erdős-Rényi preBötC network and a small-world reticular premotor network with interconnections following an anti-preferential attachment rule, which is the only configuration that produces consistent outcomes with previous experimental benchmarks. Furthermore, since the performance of neuronal network simulations is, to some extent, affected by the nature of the cellular model, we aim to develop a more realistic cellular model based on the one we adopted in previous network studies, which would account for some recent experimental findings on rhythmogenic preBötC neurons

    A systems engineering approach to model, tune and test synthetic gene circuits

    Full text link
    La biología sintética se define como la ingeniería de la biología: el (re)diseño y construcción de nuevas partes, dispositivos y sistemas biológicos para realizar nuevas funciones con fines útiles, que se basan en principios elucidados de la biología y la ingeniería. Para facilitar la construcción rápida, reproducible y predecible de estos sistemas biológicos a partir de conjuntos de componentes es necesario desarrollar nuevos métodos y herramientas. La tesis plantea la optimización multiobjetivo como el marco adecuado para tratar los problemas comunes que surgen en el diseño racional y el ajuste óptimo de los circuitos genéticos sintéticos. Utilizando un enfoque clásico de ingeniería de sistemas, la tesis se centra principalmente en: i) el modelado de circuitos genéticos sintéticos basado en los primeros principios, ii) la estimación de parámetros de modelos a partir de datos experimentales y iii) el ajuste basado en modelos para lograr el desempeño deseado de los circuitos. Se han utilizado dos circuitos genéticos sintéticos de diferente naturaleza y con diferentes objetivos y problemas: un circuito de realimentación de tipo 1 incoherente (I1-FFL) que exhibe la importante propiedad biológica de adaptación, y un circuito de detección de quorum sensing y realimentación (QS/Fb) que comprende dos bucles de realimentación entrelazados -uno intracelular y uno basado en la comunicación de célula a célula- diseñado para regular el nivel medio de expresión de una proteína de interés mientras se minimiza su varianza a través de la población de células. Ambos circuitos han sido analizados in silico e implementados in vivo. En ambos casos, se han desarrollado modelos de estos circuitos basado en primeros principios. Se presta especial atención a ilustrar cómo obtener modelos de orden reducido susceptibles de estimación de parámetros, pero manteniendo el significado biológico. La estimación de los parámetros del modelo a partir de los datos experimentales se considera en diferentes escenarios, tanto utilizando modelos determinísticos como estocásticos. Para el circuito I1-FFL se consideran modelos determinísticos. Aquí, la tesis plantea la utilización de modelos locales utilizando la optimización multiobjetivo para realizar la estimación de parámetros del modelo bajo escenarios con estructura de modelo incompleta. Para el circuito QS/Fb, una estructura controlada por realimentación, el problema tratado es la falta de excitabilidad de las señales. La tesis propone una metodología de estimación en dos etapas utilizando modelos estocásticos. La metodología permite utilizar datos de curso temporal promediados de la población y mediciones de distribución en estado estacionario para una sola célula. El ajuste de circuitos basado en modelos para lograr un desempeño deseado también se aborda mediante la optimización multiobjetivo. Para el circuito QS/Fb se realiza un análisis estocástico completo. La tesis aborda cómo tener en cuenta correctamente tanto el ruido intrínseco como el extrínseco, las dos principales fuentes de ruido en los circuitos genéticos. Se analiza el equilibrio entre ambas fuentes de ruido y el papel que desempeñan en el bucle de realimentación intracelular, y en la realimentación extracelular de toda la población. La principal conclusión es que la compleja interacción entre ambos canales de realimentación obliga al uso de la optimización multiobjetivo para el adecuado ajuste del circuito. En esta tesis además del uso adecuado de herramientas de optimización multiobjetivo, la principal preocupación es cómo derivar directrices para el ajuste in silico de parámetros de circuitos que puedan aplicarse de forma realista in vivo en un laboratorio estándar. Como alternativa al análisis de sensibilidad de parámetros clásico, la tesis propone el uso de técnicas de clustering a lo largo de los frentes de Pareto, relacionando el comprLa biologia sintètica es defineix com l'enginyeria de la biologia: el (re) disseny i construcció de noves parts, dispositius i sistemes biològics per a realitzar noves funcions útils que es basen a principis elucidats de la biologia i l'enginyeria. Per facilitar la construcció ràpida, reproduïble i predictible de aquests sistemes biològics a partir de conjunts de components és necessari desenvolupar nous mètodes i eines. La tesi planteja la optimització multiobjectiu com el marc adequat per a tractar els problemes comuns que apareixen en el disseny racional i l' ajust òptim dels circuits genètics sintètics. Utilitzant un enfocament clàssic d'enginyeria de sistemes, la tesi es centra principalment en: i) el modelatge de circuits genètics sintètics basat en primers principis, ii) l' estimació de paràmetres de models a partir de dades experimentals i iii) l' ajust basat en models per aconseguir el rendiment desitjat dels circuits. S'han utilitzat dos circuits genètics sintètics de diferent naturalesa i amb diferents objectius i problemes: un circuit de prealimentació de tipus 1 incoherent (I1-FFL) que exhibeix la important propietat biològica d'adaptació, i un circuit de quorum sensing i realimentació (QS/Fb) que comprèn dos bucles de realimentació entrellaçats -un intracel·lular i un basat en la comunicació de cèl·lula a cèl·lula- dis-senyat per regular el nivell mitjà d'expressió normal d'una proteïna d'interès mentre es minimitza la seua variació al llarg de la població de cèl·lules. Els dos circuits han estat analitzats in silico i implementats in vivo. En tots dos casos, s'han desenvolupat models basats en primers principis d'aquests circuits. Després es presta especial atenció a delinear com obtenir models d'ordre reduït susceptibles de estimació de paràmetres, però mantenint el significat biològic. L' estimació dels paràmetres del model a partir de les dades experimentals es considera en diferents escenaris, tant utilitzant models determinístics com estocàstics. Per al circuit I1-FFL es consideren models determinístics. La tesi planteja la utilització de models locals utilitzant la optimització multiobjectiu per realitzar l'estimació de parametres del model sota escenaris amb estructura de model incompleta (dinàmica no modelada). Per al circuit de QS/Fb, una estructura controlada per realimentació, el problema tractat és la manca d'excitabilitat dels senyals. La tesi proposa una metodologia de estimació en dues etapes utilitzant models estocàstics. La metodologia permet utilitzar dades de curs temporal promediats de la població i mesures de distribució en estat estacionari d'una sola una cèl·lula. L' ajust de circuits basat en models per aconseguir el rendiment desitjat dels circuits també s' aborda mitjançant la optimització multiobjectiu. Per al circuit QS/Fb, es fa un anàlisi estocàstic complet. La tesi aborda com tenir en compte correctament tant el soroll intrínsec com l' extrínsec, les dues principals fonts de soroll en els circuits genètics sintètics. S' analitza l'equilibri entre dues fonts de soroll i el paper que exerceixen en el bucle de realimentació intracel·lular, les i en la realimentació extracel·lular de tota la població. La principal conclusió es que la complexa interacció entre els dos canals de realimentació fa necessari l' ús de la optimització multiobjectiu per al adequat ajust del circuit. En aquesta tesi, a més de l'ús adequat d'eines d'optimització multiobjectiu, la principal preocupació és com derivar directives per al ajust in silico de paràmetres de circuits que puguin aplicar-se de forma realista en viu en un laboratori estàndard. Així, com a alternativa a l'anàlisi de sensibilitat de paràmetres clàssic, la tesi proposa l'ús de l' tècniques de l'agrupació al llarg dels fronts de Pareto, relacionant el compromís de dessempeny amb les regions en l'espai d'paràmetres.Synthetic biology is defined as the engineering of biology: the deliberate (re)design and construction of novel biological and biologically based parts, devices and systems to perform new functions for useful purposes, that draws on principles elucidated from biology and engineering. Methods and tools are needed to facilitate fast, reproducible and predictable construction of biological systems from sets of biological components. This thesis raises multi-objective optimization as the proper framework to deal with common problems arising in rational design and optimal tuning of synthetic gene circuits. Using a classical systems engineering approach, the thesis mainly addresses: i) synthetic gene circuit modeling based on first principles, ii) model parameters estimation from experimental data and iii) model-based tuning to achieve desired circuit performance. Two gene synthetic circuits of different nature and with different goals and inherent problems have been used throughout the thesis: an Incoherent type 1 feedforward circuit (I1-FFL) that exhibits the important biological property of adaptation, and a Quorum sensing/Feedback circuit (QS/Fb) comprising two intertwined feedback loops -an intracellular one and a cell-to-cell communication-based one-- designed to regulate the mean expression level of a protein of interest while minimizing its variance across the population of cells. Both circuits have been analyzed in silico and implemented in vivo. In both cases, circuit modeling based on first principles has been carried out. Then, special attention is paid to illustrate how to obtain reduced order models amenable for parameters estimation yet keeping biological significance. Model parameters estimation from experimental data is considered in different scenarios, both using deterministic and stochastic models. For the I1-FFL circuit, deterministic models are considered. In this case, the thesis raises ensemble modeling using multi-objective optimization to perform model parameters estimation under scenarios with incomplete model structure (unmodeled dynamics). For the QS/Fb gene circuit, a feedback controlled structure, the lack of excitability of the signals is the problem addressed. The thesis proposes a two-stage estimation methodology using stochastic models. The methodology allows using population averaged time-course data and steady state distribution measurements at the single-cell level. Model-based circuit tuning to achieve desired circuit performance is also addressed using multi-objective optimization. First, for the QS/Fb feedback control circuit, a complete stochastic analysis is performed. Here, the thesis addresses how to correctly take into account both intrinsic and extrinsic noise, the two main sources of noise in gene synthetic circuits. The trade-off between both sources of noise, and the role played by in the intracellular single-cell feedback loop and the extracellular population-wide feedback is analyzed. The main conclusion being that the complex interplay between both feedback channels compel the use of multi-objective optimization for proper tuning of the circuit to achieve desired performance. Thus, the thesis wraps up all the previous results and uses them to address circuit tuning for desired performance. Here, besides the proper use of multi-objective optimization tools, the main concern is how to derive guidelines for circuit parameters tuning in silico that can realistically be applied in vivo in a standard laboratory. Thus, as an alternative to classical parameters sensitivity analysis, the thesis proposes the use of clustering techniques along the optimal Pareto fronts relating the performance trade-offs with regions in the circuits parameters space.This work has been partially supported by the Spanish Government (CICYT DPI2014- 55276-C5-1) and the European Union (FEDER). The author was recipient of the grant Formación de Personal Investigador by the Universitat Politècnica de València, subprogram 1 (FPI/2013-3242). She was also recipient of the competitive grants for pre-doctoral stays Erasmus Student Placement-European Programme 2015, and FPI Mobility program 2016 of the Universitat Politècnica de València. She also received the competitive grant for a pre-doctoral stay Becas de movilidad para Jóvenes Profesores e Investigadores 2016, Programa de Becas Iberoamérica of the Santander Bank.Boada Acosta, YF. (2018). A systems engineering approach to model, tune and test synthetic gene circuits [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/112725TESI

    Computational Modeling of Inflammatory Mediators in Acute Illness: From Networks to Mechanisms

    Get PDF
    The acute inflammatory response is a complex defense mechanism that has evolved to respond rapidly to injury, infection, and other disruptions in homeostasis. The complex role of inflammation in health and disease has made it difficult to understand comprehensively. With the advent of high throughput technologies and the growth of systems biology, there has been an unprecedented amount of data and –omics analysis aimed at uncovering this complexity. However, there still remains a shortage of translational insights for acute inflammatory diseases from these studies. In this dissertation, we employ a comprehensive systems approach in order to study the coordination of inflammation and identify key control mechanisms, and how these map onto clinical outcomes. This process begins with collection of high-dimensional time course data of inflammatory mediators, followed by data-driven modeling and network inference that finally informs mechanistic computational models for prediction and analysis. In patients with pediatric acute liver failure (PALF), we inferred inflammatory networks and identified key differences between patients that were survivors versus non-survivors when other analyses proved inconclusive. We showed that inflammatory networks can be used both as biomarkers and to generate mechanistic hypotheses for this poorly understood disease. In experimental models of trauma as well as in human trauma patients, we identify a conserved central network motif of cross-regulating chemokines. We develop a logical model based on this hypothesized network, which is able to capture both inflammatory trajectory and clinical outcome differences among patients with differing injury severity. These studies suggest that the hypothesized cross-regulatory interactions among chemokines MIG, IP-10 and MCP-1 represents an important point of control regulating the progression of acute inflammation. We propose that further analysis and validation of this hypothesis will require targeted perturbation studies in cells and animals with iterative rounds of mechanistic model refinement. We explore an example of such a study focused on the anti-inflammatory effects of NAD+, wherein we characterize a signaling pathway that gives rise to a complex dose and time dependent induction of TGF-β1

    Information processing in biological complex systems: a view to bacterial and neural complexity

    Get PDF
    This thesis is a study of information processing of biological complex systems seen from the perspective of dynamical complexity (the degree of statistical independence of a system as a whole with respect to its components due to its causal structure). In particular, we investigate the influence of signaling functions in cell-to-cell communication in bacterial and neural systems. For each case, we determine the spatial and causal dependencies in the system dynamics from an information-theoretic point of view and we relate it with their physiological capabilities. The main research content is presented into three main chapters. First, we study a previous theoretical work on synchronization, multi-stability, and clustering of a population of coupled synthetic genetic oscillators via quorum sensing. We provide an extensive numerical analysis of the spatio-temporal interactions, and determine conditions in which the causal structure of the system leads to high dynamical complexity in terms of associated metrics. Our results indicate that this complexity is maximally receptive at transitions between dynamical regimes, and maximized for transient multi-cluster oscillations associated with chaotic behaviour. Next, we introduce a model of a neuron-astrocyte network with bidirectional coupling using glutamate-induced calcium signaling. This study is focused on the impact of the astrocyte-mediated potentiation on synaptic transmission. Our findings suggest that the information generated by the joint activity of the population of neurons is irreducible to its independent contribution due to the role of astrocytes. We relate these results with the shared information modulated by the spike synchronization imposed by the bidirectional feedback between neurons and astrocytes. It is shown that the dynamical complexity is maximized when there is a balance between the spike correlation and spontaneous spiking activity. Finally, the previous observations on neuron-glial signaling are extended to a large-scale system with community structure. Here we use a multi-scale approach to account for spatiotemporal features of astrocytic signaling coupled with clusters of neurons. We investigate the interplay of astrocytes and spiking-time-dependent-plasticity at local and global scales in the emergence of complexity and neuronal synchronization. We demonstrate the utility of astrocytes and learning in improving the encoding of external stimuli as well as its ability to favour the integration of information at synaptic timescales to exhibit a high intrinsic causal structure at the system level. Our proposed approach and observations point to potential effects of the astrocytes for sustaining more complex information processing in the neural circuitry

    On the development of slime mould morphological, intracellular and heterotic computing devices

    Get PDF
    The use of live biological substrates in the fabrication of unconventional computing (UC) devices is steadily transcending the barriers between science fiction and reality, but efforts in this direction are impeded by ethical considerations, the field’s restrictively broad multidisciplinarity and our incomplete knowledge of fundamental biological processes. As such, very few functional prototypes of biological UC devices have been produced to date. This thesis aims to demonstrate the computational polymorphism and polyfunctionality of a chosen biological substrate — slime mould Physarum polycephalum, an arguably ‘simple’ single-celled organism — and how these properties can be harnessed to create laboratory experimental prototypes of functionally-useful biological UC prototypes. Computing devices utilising live slime mould as their key constituent element can be developed into a) heterotic, or hybrid devices, which are based on electrical recognition of slime mould behaviour via machine-organism interfaces, b) whole-organism-scale morphological processors, whose output is the organism’s morphological adaptation to environmental stimuli (input) and c) intracellular processors wherein data are represented by energetic signalling events mediated by the cytoskeleton, a nano-scale protein network. It is demonstrated that each category of device is capable of implementing logic and furthermore, specific applications for each class may be engineered, such as image processing applications for morphological processors and biosensors in the case of heterotic devices. The results presented are supported by a range of computer modelling experiments using cellular automata and multi-agent modelling. We conclude that P. polycephalum is a polymorphic UC substrate insofar as it can process multimodal sensory input and polyfunctional in its demonstrable ability to undertake a variety of computing problems. Furthermore, our results are highly applicable to the study of other living UC substrates and will inform future work in UC, biosensing, and biomedicine

    The computational role of short-term plasticity and the balance of excitation and inhibition in neural microcircuits: experimental and theoretical analysis

    Get PDF
    The computations performed by the brain ultimately rely on the functional connectivity between neurons embedded in complex networks. It is well known that the neuronal connections, the synapses, are plastic, i.e. the contribution of each presynaptic neuron to the firing of a postsynaptic neuron can be independently adjusted. The modulation of effective synaptic strength can occur on time scales that range from tens or hundreds of milliseconds, to tens of minutes or hours, to days, and may involve pre- and/or post-synaptic modifications. The collection of these mechanisms is generally believed to underlie learning and memory and, hence, it is fundamental to understand their consequences in the behavior of neurons.(...

    CELLmicrocosmos - Integrative cell modeling at the  molecular, mesoscopic and functional level

    Get PDF
    Sommer B. CELLmicrocosmos - Integrative cell modeling at the  molecular, mesoscopic and functional level. Bielefeld: Bielefeld University; 2012.The modeling of cells is an important application area of Systems Biology. In the context of this work, three cytological levels are defined: the mesoscopic, the molecular and the functional level. A number of related approaches which are quite diverse will be introduced during this work which can be categorized into these disciplines. But none of these approaches covers all areas. In this work, the combination of all three aforementioned cytological levels is presented, realized by the CELLmicrocosmos project, combining and extending different Bioinformatics-related methods. The mesoscopic level is covered by CellEditor which is a simple tool to generate eukaryotic or prokaryotic cell models. These are based on cell components represented by three-dimensional shapes. Different methods to generate these shapes are discussed by using partly external tools such as Amira, 3ds Max and/or Blender; abstract, interpretative, 3D-microscopy-based and molecular-structure-based cell component modeling. To communicate with these tools, CellEditor provides import as well as export capabilities based on the VRML97 format. In addition, different cytological coloring methods are discussed which can be applied to the cell models. MembraneEditor operates at the molecular level. This tool solves heterogeneous Membrane Packing Problems by distributing lipids on rectangular areas using collision detection. It provides fast and intuitive methods supporting a wide range of different application areas based on the PDB format. Moreover, a plugin interface enables the use of custom algorithms. In the context of this work, a high-density-generating lipid packing algorithm is evaluated; The Wanderer. The semi-automatic integration of proteins into the membrane is enabled by using data from the OPM and PDBTM database. Contrasting with the aforementioned structural levels, the third level covers the functional aspects of the cell. Here, protein-related networks or data sets can be imported and mapped into the previously generated cell models using the PathwayIntegration. For this purpose, data integration methods are applied, represented by the data warehouse DAWIS-M.D. which includes a number of established databases. This information is enriched by the text-mining data acquired from the ANDCell database. The localization of proteins is supported by different tools like the interactive Localization Table and the Localization Charts. The correlation of partly multi-layered cell components with protein-related networks is covered by the Network Mapping Problem. A special implementation of the ISOM layout is used for this purpose. Finally, a first approach to combine all these interrelated levels is represented; CellExplorer which integrates CellEditor as well as PathwayIntegration and imports structures generated with MembraneEditor. For this purpose, the shape-based cell components can be correlated with networks as well as molecular membrane structures using Membrane Mapping. It is shown that the tools discussed here can be applied to scientific as well as educational tasks: educational cell visualization, initial membrane modeling for molecular simulations, analysis of interrelated protein sets, cytological disease mapping. These are supported by the user-friendly combination of Java, Java 3D and Web Start technology. In the last part of this thesis the future of Integrative Cell Modeling is discussed. While the approaches discussed here represent basically three-dimensional snapshots of the cell, prospective approaches have to be extended into the fourth dimension; time
    corecore