63 research outputs found

    Comprehensive survey on quality of service provisioning approaches in cognitive radio networks : part one

    Get PDF
    Much interest in Cognitive Radio Networks (CRNs) has been raised recently by enabling unlicensed (secondary) users to utilize the unused portions of the licensed spectrum. CRN utilization of residual spectrum bands of Primary (licensed) Networks (PNs) must avoid harmful interference to the users of PNs and other overlapping CRNs. The coexisting of CRNs depends on four components: Spectrum Sensing, Spectrum Decision, Spectrum Sharing, and Spectrum Mobility. Various approaches have been proposed to improve Quality of Service (QoS) provisioning in CRNs within fluctuating spectrum availability. However, CRN implementation poses many technical challenges due to a sporadic usage of licensed spectrum bands, which will be increased after deploying CRNs. Unlike traditional surveys of CRNs, this paper addresses QoS provisioning approaches of CRN components and provides an up-to-date comprehensive survey of the recent improvement in these approaches. Major features of the open research challenges of each approach are investigated. Due to the extensive nature of the topic, this paper is the first part of the survey which investigates QoS approaches on spectrum sensing and decision components respectively. The remaining approaches of spectrum sharing and mobility components will be investigated in the next part

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Network performance & Quality of service in data networks involving spectrum utilization techniques

    Get PDF
    This research has developed technique to improve the quality of service in wireless data networks that employ spectrum utilization techniques based on Cognitive Radio. Most multiple dimension implementations focus on maximizing the Successful Communication Probability SCP in order to improve the wireless network utilization. However this usually has a negative impact on the Quality of Service, since increasing the SCP leads to increasing signal interference and Packet Loss, and thus network performance deterioration. The Multiple Dimension Cognitive Radio technique is a new technique, proposed in this thesis, that improves the Cognitive Radio Networks (CRN) efficiency by giving opportunity to secondary users (Unlicensed users) to use several dimension such as time, frequency, modulation, coding, and antenna directionality to increase their opportunity in finding spectrum hole. In order to draw a balance between improving the networking utilization and keeping the network performance at an acceptable level, this thesis proposes a new model of multiple dimension CR which provides a compromise between maximizing the SCP and network throughput from one side and keeping the QoS within the accepted thresholds from the other side. This is important so as to avoid network performance degradation which may result from the high user density in single wireless domain as a result of maximizing the SCP. In this research, a full Cognitive Radio model has been implemented in the OPNET simulator by developing modified nodes with the appropriate coding which include basic functionality. The Purpose of this model is to simulate the CR environment and study the network performance after applying the controlled multi dimension technique presented here. The proposed technique observes the channel throughput on TCP (Transmission Control Protocol) level, also QoS KPIs (Key Performance Index) like Packet Loss and Bit Error rate, during the operation of the CR multi dimension technique and alerts the system when the throughput degrades below a certain level. The proposed technique has interactive cautious nature which keeps monitoring the network performance and once find evident on network performance deterioration it takes corrective action, terminates low priority connections and releases over utilized channels, in order to keep the performance accepted
    • …
    corecore