8,735 research outputs found

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    An integrated decision support framework for remanufacturing in the automotive industry

    Get PDF
    In today\u27s global economy, firms are seeking any and every opportunity to differentiate from competitors by reducing supply chain costs and adding value to end customers. One increasingly popular option, under growing consumer awareness and increasing legislation, is to reintegrate returned products into the supply chain to achieve economic benefits as well as improve sustainability. An important class of such reverse goods flows has to do with remanufacturing (reman), which refers to activities that restore returned products ( cores ) or their major modules to operational condition for using in place of new product or distributing through other channels (e.g., spare parts). While opportunities abound, some key complications reported in the literature include: 1) difficulty in timing the launch of reman product (while accounting for uncertainties associated with product life-cycle demand and core supply), 2) difficulty with capacity planning for remanufacturing (while accounting for the fact that volumes can be low and that facilities/lines should target multiple product families for economies of scale), and 3) operational difficulties in maintaining efficiencies in production planning and control of remanufacturing activities. These difficulties are mostly attributable to limited visibility and higher levels of uncertainty in reverse logistics (in comparison with forward logistics). Despite advances in the remanufacturing literature in the last two decades (both in the academic literature and practitioner community), there is no integrated decision support framework that can guide companies to successful launch and execution of remanufacturing operations. This is particularly true for companies that engage in both original equipment (OE) service as well as the independent after-market (IAM) in the automotive industry. This research aims to address these limitations by developing a decision support framework and necessary models for effective remanufacturing in the automotive industry. At the strategic level, we propose a unified approach to explicitly model and address issues of capacities as well timing the launch of remanufacturing programs for new product. We derive the optimal remanufacturing policy and extensively studied the drivers of cost-effective remanufacturing program for aftermarket services. Our policies exploit the ability to leverage OE production to support both the OE service operations as well as demand from the IAM. To the best of our knowledge, this research is the first attempt of its kind in the remanufacturing literature, as prior research treated these interrelated decisions separately. Valuable managerial insights are obtained by minimizing the discounted cash outflows caused by appropriate investment and core return inventory building decisions. We show that, under certain conditions, it may be optimal to delay the launch of the remanufacturing program to build up an adequate initial core return inventory. This may help in perfectly substituting virgin parts with remanufactured parts after end of the OE production run. At operational level, efficient production planning and control of reman parts for the supplier heavily impinges on the ability to accurately forecast core returns from customers (e.g., dealers, distributors). There are several challenges to this, including, the volume and diversity of customers served by the supplier, differences among individual customer warehouses in returning cores, large reman product catalogs, changing customer behaviors (often improving core return delays), and data sparsity. In this research we report the evidence for the effectiveness of hazard rate regression models to estimate core return delays in the context of remanufacturing. We investigate a number of hazard rate modelling techniques (e.g., parametric, semi-parametric etc.) using real-world datasets from a leading Tier-1 automotive supplier. Results indicate the effectiveness of the proposed framework in terms of stability and face validity of the estimates and in predictive accuracy

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    Modeling high-performance wormhole NoCs for critical real-time embedded systems

    Get PDF
    Manycore chips are a promising computing platform to cope with the increasing performance needs of critical real-time embedded systems (CRTES). However, manycores adoption by CRTES industry requires understanding task's timing behavior when their requests use manycore's network-on-chip (NoC) to access hardware shared resources. This paper analyzes the contention in wormhole-based NoC (wNoC) designs - widely implemented in the high-performance domain - for which we introduce a new metric: worst-contention delay (WCD) that captures wNoC impact on worst-case execution time (WCET) in a tighter manner than the existing metric, worst-case traversal time (WCTT). Moreover, we provide an analytical model of the WCD that requests can suffer in a wNoC and we validate it against wNoC designs resembling those in the Tilera-Gx36 and the Intel-SCC 48-core processors. Building on top of our WCD analytical model, we analyze the impact on WCD that different design parameters such as the number of virtual channels, and we make a set of recommendations on what wNoC setups to use in the context of CRTES.Peer ReviewedPostprint (author's final draft

    Network Latency and Packet Delay Variation in Cyber-physical Systems

    Get PDF
    The problem addressed in this paper is the limitation imposed by network elements, especially Ethernet elements, on the real-time performance of time-critical systems. Most current network elements are concerned only with data integrity, connection, and throughput with no mechanism for enforcing temporal semantics. Existing safety-critical applications and other applications in industry require varying degrees of control over system-wide temporal semantics. In addition, there are emerging commercial applications that require or will benefit from tighter enforcement of temporal semantics in network elements than is currently possible. This paper examines these applications and requirements and suggests possible approaches to imposing temporal semantics on networks. Model-based design and simulation is used to evaluate the effects of network limitations on time-critical systems

    Energy Detection UWB Receiver Design using a Multi-resolution VHDL-AMS Description

    Get PDF
    Ultra Wide Band (UWB) impulse radio systems are appealing for location-aware applications. There is a growing interest in the design of UWB transceivers with reduced complexity and power consumption. Non-coherent approaches for the design of the receiver based on energy detection schemes seem suitable to this aim and have been adopted in the project the preliminary results of which are reported in this paper. The objective is the design of a UWB receiver with a top-down methodology, starting from Matlab-like models and refining the description down to the final transistor level. This goal will be achieved with an integrated use of VHDL for the digital blocks and VHDL-AMS for the mixed-signal and analog circuits. Coherent results are obtained using VHDL-AMS and Matlab. However, the CPU time cost strongly depends on the description used in the VHDL-AMS models. In order to show the functionality of the UWB architecture, the receiver most critical functions are simulated showing results in good agreement with the expectations

    A framework for documenting and analyzing life-cycle costs using a simple network based representation

    Get PDF
    The introduction of high reliability systems combined with new ways of operating complex systems, particularly in aircraft design and operation has received much attention in recent years. Some systems are now being introduced into service, however, justifying such systems on a financial basis is difficult and may act to limit the rate of introduction on new products. Conventional life cycle costing based on a hierarchical cost breakdown structure is poor at recording and analysing the cost implications of introducing new technologies that have effects that span more than one phase in the life cycle. There is a risk that too much emphasis is put on ‘faith’ that a candidate technology will reduce cost because the cost analysis methods lack descriptive and analytical power. We describe an approach to representing the costs associated with introducing new technologies and evaluating their total cost. Our aim was to facilitate the comparison of different technological choices in new product development, with a particular interest in how the perceived benefits of enhanced reliability systems can be shown in a way that is inclusive, objective and easy to understand
    corecore