105 research outputs found

    Analyzing deep CNN-based utterance embeddings for acoustic model adaptation

    Get PDF
    We explore why deep convolutional neural networks (CNNs) with small two-dimensional kernels, primarily used for modeling spatial relations in images, are also effective in speech recognition. We analyze the representations learned by deep CNNs and compare them with deep neural network (DNN) representations and i-vectors, in the context of acoustic model adaptation. To explore whether interpretable information can be decoded from the learned representations we evaluate their ability to discriminate between speakers, acoustic conditions, noise type, and gender using the Aurora-4 dataset. We extract both whole model embeddings (to capture the information learned across the whole network) and layer-specific embeddings which enable understanding of the flow of information across the network. We also use learned representations as the additional input for a time-delay neural network (TDNN) for the Aurora-4 and MGB-3 English datasets. We find that deep CNN embeddings outperform DNN embeddings for acoustic model adaptation and auxiliary features based on deep CNN embeddings result in similar word error rates to i-vectors.Comment: accepted to SLT 201

    What do End-to-End Speech Models Learn about Speaker, Language and Channel Information? A Layer-wise and Neuron-level Analysis

    Full text link
    End-to-end DNN architectures have pushed the state-of-the-art in speech technologies, as well as in other spheres of AI, leading researchers to train more complex and deeper models. These improvements came at the cost of transparency. DNNs are innately opaque and difficult to interpret. We no longer understand what features are learned, where they are preserved, and how they inter-operate. Such an analysis is important for better model understanding, debugging and to ensure fairness in ethical decision making. In this work, we analyze the representations trained within deep speech models, towards the task of speaker recognition, dialect identification and reconstruction of masked signals. We carry a layer- and neuron-level analysis on the utterance-level representations captured within pretrained speech models for speaker, language and channel properties. We study: is this information captured in the learned representations? where is it preserved? how is it distributed? and can we identify a minimal subset of network that posses this information. Using diagnostic classifiers, we answered these questions. Our results reveal: (i) channel and gender information is omnipresent and is redundantly distributed (ii) complex properties such as dialectal information is encoded only in the task-oriented pretrained network and is localised in the upper layers (iii) a minimal subset of neurons can be extracted to encode the predefined property (iv) salient neurons are sometimes shared between properties and can highlights presence of biases in the network. Our cross-architectural comparison indicates that (v) the pretrained models captures speaker-invariant information and (vi) the pretrained CNNs models are competitive to the Transformers for encoding information for the studied properties. To the best of our knowledge, this is the first study to investigate neuron analysis on the speech models.Comment: Submitted to CSL. Keywords: Speech, Neuron Analysis, Interpretibility, Diagnostic Classifier, AI explainability, End-to-End Architectur

    Zero-shot keyword spotting for visual speech recognition in-the-wild

    Full text link
    Visual keyword spotting (KWS) is the problem of estimating whether a text query occurs in a given recording using only video information. This paper focuses on visual KWS for words unseen during training, a real-world, practical setting which so far has received no attention by the community. To this end, we devise an end-to-end architecture comprising (a) a state-of-the-art visual feature extractor based on spatiotemporal Residual Networks, (b) a grapheme-to-phoneme model based on sequence-to-sequence neural networks, and (c) a stack of recurrent neural networks which learn how to correlate visual features with the keyword representation. Different to prior works on KWS, which try to learn word representations merely from sequences of graphemes (i.e. letters), we propose the use of a grapheme-to-phoneme encoder-decoder model which learns how to map words to their pronunciation. We demonstrate that our system obtains very promising visual-only KWS results on the challenging LRS2 database, for keywords unseen during training. We also show that our system outperforms a baseline which addresses KWS via automatic speech recognition (ASR), while it drastically improves over other recently proposed ASR-free KWS methods.Comment: Accepted at ECCV-201

    Multimodal Language Analysis with Recurrent Multistage Fusion

    Full text link
    Computational modeling of human multimodal language is an emerging research area in natural language processing spanning the language, visual and acoustic modalities. Comprehending multimodal language requires modeling not only the interactions within each modality (intra-modal interactions) but more importantly the interactions between modalities (cross-modal interactions). In this paper, we propose the Recurrent Multistage Fusion Network (RMFN) which decomposes the fusion problem into multiple stages, each of them focused on a subset of multimodal signals for specialized, effective fusion. Cross-modal interactions are modeled using this multistage fusion approach which builds upon intermediate representations of previous stages. Temporal and intra-modal interactions are modeled by integrating our proposed fusion approach with a system of recurrent neural networks. The RMFN displays state-of-the-art performance in modeling human multimodal language across three public datasets relating to multimodal sentiment analysis, emotion recognition, and speaker traits recognition. We provide visualizations to show that each stage of fusion focuses on a different subset of multimodal signals, learning increasingly discriminative multimodal representations.Comment: EMNLP 201
    corecore