1,314 research outputs found

    Parallel software tools at Langley Research Center

    Get PDF
    This document gives a brief overview of parallel software tools available on the Intel iPSC/860 parallel computer at Langley Research Center. It is intended to provide a source of information that is somewhat more concise than vendor-supplied material on the purpose and use of various tools. Each of the chapters on tools is organized in a similar manner covering an overview of the functionality, access information, how to effectively use the tool, observations about the tool and how it compares to similar software, known problems or shortfalls with the software, and reference documentation. It is primarily intended for users of the iPSC/860 at Langley Research Center and is appropriate for both the experienced and novice user

    Sandboxed, Online Debugging of Production Bugs for SOA Systems

    Get PDF
    Short time-to-bug localization is extremely important for any 24x7 service-oriented application. To this end, we introduce a new debugging paradigm called live debugging. There are two goals that any live debugging infrastructure must meet: Firstly, it must offer real-time insight for bug diagnosis and localization, which is paramount when errors happen in user-facing applications. Secondly, live debugging should not impact user-facing performance for normal events. In large distributed applications, bugs which impact only a small percentage of users are common. In such scenarios, debugging a small part of the application should not impact the entire system. With the above-stated goals in mind, this thesis presents a framework called Parikshan, which leverages user-space containers (OpenVZ) to launch application instances for the express purpose of live debugging. Parikshan is driven by a live-cloning process, which generates a replica (called debug container) of production services, cloned from a production container which continues to provide the real output to the user. The debug container provides a sandbox environment, for safe execution of monitoring/debugging done by the users without any perturbation to the execution environment. As a part of this framework, we have designed customized-network proxies, which replicate inputs from clients to both the production and test-container, as well safely discard all outputs. Together the network duplicator, and the debug container ensure both compute and network isolation of the debugging environment. We believe that this piece of work provides the first of its kind practical real-time debugging of large multi-tier and cloud applications, without requiring any application downtime, and minimal performance impact

    When a Patch is Not Enough - HardFails: Software-Exploitable Hardware Bugs

    Full text link
    In this paper, we take a deep dive into microarchitectural security from a hardware designer's perspective by reviewing the existing approaches to detect hardware vulnerabilities during the design phase. We show that a protection gap currently exists in practice that leaves chip designs vulnerable to software-based attacks. In particular, existing verification approaches fail to detect specific classes of vulnerabilities, which we call HardFails: these bugs evade detection by current verification techniques while being exploitable from software. We demonstrate such vulnerabilities in real-world SoCs using RISC-V to showcase and analyze concrete instantiations of HardFails. Patching these hardware bugs may not always be possible and can potentially result in a product recall. We base our findings on two extensive case studies: the recent Hack@DAC 2018 hardware security competition, where 54 independent teams of researchers competed world-wide over a period of 12 weeks to catch inserted security bugs in SoC RTL designs, and an in-depth systematic evaluation of state-of-the-art verification approaches. Our findings indicate that even combinations of techniques will miss high-impact bugs due to the large number of modules with complex interdependencies and fundamental limitations of current detection approaches. We also craft a real-world software attack that exploits one of the RTL bugs from Hack@DAC that evaded detection and discuss novel approaches to mitigate the growing problem of cross-layer bugs at design time
    • …
    corecore