86,781 research outputs found

    On Modeling and Analyzing Cost Factors in Information Systems Engineering

    Get PDF
    Introducing enterprise information systems (EIS) is usually associated with high costs. It is therefore crucial to understand those factors that determine or influence these costs. Though software cost estimation has received considerable attention during the last decades, it is difficult to apply existing approaches to EIS. This difficulty particularly stems from the inability of these methods to deal with the dynamic interactions of the many technological, organizational and projectdriven cost factors which specifically arise in the context of EIS. Picking up this problem, we introduce the EcoPOST framework to investigate the complex cost structures of EIS engineering projects through qualitative cost evaluation models. This paper extends previously described concepts and introduces design rules and guidelines for cost evaluation models in order to enhance the development of meaningful and useful EcoPOST cost evaluation models. A case study illustrates the benefits of our approach. Most important, our EcoPOST framework is an important tool supporting EIS engineers in gaining a better understanding of the critical factors determining the costs of EIS engineering projects

    Simulation Models for Analyzing the Dynamic Costs of Process-aware Information Systems

    Get PDF
    Introducing process-aware information systems (PAIS) in enterprises (e.g., workflow management systems, case handling systems) is associated with high costs. Though cost estimation has received considerable attention in software engineering for many years, it is difficult to apply existing approaches to PAIS. This difficulty particularly stems from the inability of existing estimation techniques to deal with the complex interplay of the many technological, organizational and project-driven factors which emerge in the context of PAIS. In response to this problem, this paper proposes an approach which utilizes simulation models for investigating the dynamic costs of PAIS engineering projects. We motivate the need for simulation, discuss the development and execution of simulation models, and give an illustrating example. The present work has been accomplished in the EcoPOST project, which deals with the development of a comprehensive evaluation framework for analyzing PAIS engineering projects from a value-based perspective

    Exploring the Dynamic Costs of Process-aware Information Systems through Simulation

    Get PDF
    Introducing process-aware information systems (PAIS) in enterprises (e.g., workflow management systems, case handling systems) is associated with high costs. Though cost evaluation has received considerable attention in software engineering for many years, it is difficult to apply existing evaluation approaches to PAIS. This difficulty particularly stems from the inability of these techniques to deal with the complex interplay of the many technological, organizational and project-driven factors which emerge in the context of PAIS engineering projects. In response to this problem this paper proposes an approach which utilizes simulation models for investigating costs related to PAIS engineering projects. We motivate the need for simulation, discuss the design and execution of simulation models, and give an illustrating example

    Collaborative information systems and business process design using simulation

    Get PDF
    The Information Systems (IS) community promotes the idea that IS analyst should have a clear understanding of the way the organization operates before attempting to propose an IS solution. It is argued that to take a complete advantage of the underlying Information Technology (IT), organizations should first identify any process flaw and then propose a suitable IT solution. Similarly, many process design approaches claim that Business Process (BP) design should be done considering the advantages provided and the limitations imposed by the underlying (IT). Despite this fact research in these domains provides little indication of which mechanisms or tools can help BP and IS analyst to understand the complex relationships amongst these two areas. This paper describes the insights gained during a UK funded research project, namely ASSESS-IT, that aimed to depict the dynamic relationships between IT and BP using simulation. One of the major limitations of the ASSESS-IT project is that it looked at relationship between BP and IT as a three layered structure, namely BP, IS and Computer Networks (CN), and did not explore in detail the relationships between BP and IS alone. This paper uses the outcomes derived from this project and suggests that, is some cases, the relationship between BP and IT could be analyzed by looking at the relationship between BP and IS alone. It then proposes an alternative simulation framework, namely BPISS, that provides the guideline to develop simulation models that portray BP and IS behavior performance measurements, offering in this way an alternative mechanism that can help BP and IS analyst to understand in more detail the dynamic interactions between BP and IS domains

    On Engineering Support for Business Process Modelling and Redesign

    Get PDF
    Currently, there is an enormous (research) interest in business process redesign (BPR). Several management-oriented approaches have been proposed showing how to make BPR work. However, detailed descriptions of empirical experience are few. Consistent engineering methodologies to aid and guide a BPR-practitioner are currently emerging. Often, these methodologies are claimed to be developed for business process modelling, but stem directly from information system design cultures. We consider an engineering methodology for BPR to consist of modelling concepts, their representation, computerized tools and methods, and pragmatic skills and guidelines for off-line modelling, communicating, analyzing, (re)designing\ud business processes. The modelling concepts form the architectural basis of such an engineering methodology. Therefore, the choice, understanding and precise definition of these concepts determine the productivity and effectiveness of modelling tasks within a BPR project. The\ud current paper contributes to engineering support for BPR. We work out general issues that play a role in the development of engineering support for BPR. Furthermore, we introduce an architectural framework for business process modelling and redesign. This framework consists of a coherent set of modelling concepts and techniques on how to use them. The framework enables the modelling of both the structural and dynamic characteristics of business processes. We illustrate its applicability by modelling a case from service industry. Moreover, the architectural framework supports abstraction and refinement techniques. The use of these techniques for a BPR trajectory are discussed
    • …
    corecore