429 research outputs found

    Karlovitz numbers and premixed turbulent combustion regimes for complex-chemistry flames

    Get PDF
    The structure of premixed turbulent flames and governing physical mechanisms of the influence of turbulence on premixed burning are often discussed by invoking combustion regime diagrams. In the majority of such diagrams, boundaries of three combustion regimes associated with (i) flame preheat zones broadened locally by turbulent eddies, (ii) reaction zones broadened locally by turbulent eddies, and (iii) local extinction are based on a Karlovitz number Ka, with differently defined Ka being used to demarcate different combustion regimes. The present paper aims to overview different definitions of Ka, comparing them, and suggesting the most appropriate choice of Ka for each combustion regime boundary. Moreover, since certain Karlovitz numbers involve a laminar flame thickness, the influence of complex combustion chemistry on the thickness and, hence, on various Ka and relations between them is explored based on results of complex-chemistry simulations of unperturbed (stationary, planar, and one-dimensional) laminar premixed flames, obtained for various fuels, equivalence ratios, pressures, and unburned gas temperatures

    Transition From a Single to a Double Flame Structure in Swirling Reacting Flows: Mechanism, Dynamics, and Effect of Thermal Boundary Conditions

    Get PDF
    We examine experimentally the transition from a single flame stabilized along the inner shear layer (ISL) to a double flame stabilized along both the inner and the outer shear layers (OSL) and spreading over the outside recirculation zone (ORZ) in a fully premixed swirl-stabilized combustor. This work is mainly driven by previous studies demonstrating the link between this transition in the flame macrostructure and the onset of thermo-acoustic instabilities. Here, we examine the transition mechanism under thermo-acoustically stable conditions as well as the dominant flow and flame dynamics associated with it. In addition, we explore the role of changing the thermal boundary conditions around the ORZ and its effect on the presence or absence of the flame there. We start by analyzing the two flames bounding the transition, namely the single conical flame stabilized along the ISL (flame III) and the double conical flames with reactions taking place in the ORZ (flame IV). A dual chemiluminescence approach — using two cameras with a narrow field of view focused on the ORZ — is undertaken to track the progression of the flame as it reaches the ORZ. During the transition, the flame front, initially stabilized along the ISL, is entrained by OSL vortices close to where the turbulent jet impinges on the wall, leading to the ignition of the reactants in the ORZ and the ultimately the stabilization of the flame along the outer shear layer (OSL). This ORZ flame is also subject to extinction when the equivalence ratio (ϕ) is between values corresponding to flames III and IV. For ϕ lower than the critical transitional value, the flame kernel originating from the ISL-stabilized flame is shown to reach the ORZ but fails to grow and quickly disappears. For ϕ higher than the critical value, the flame kernel expands as it is advected by the ORZ flow and ultimately ignites the reactants recirculating in the ORZ. Sudden and extreme peak-to-peak values of the overall heat release rate are found to be concomitant with the ignition and extinction of the ORZ reactants. Finally, Different thermal boundary conditions are tested by modifying the heat flux through the combustion chamber boundary, particularly around the ORZ. We find that the transition is affected in different ways: while the transition from flame III to IV (i.e. as ϕ increases) is insensitive to these changes; flame IV persists at lower ϕ as its value is reduced when heat losses through the boundaries are diminished.Center for Clean Water and Clean Energy at MIT and KFUPM (Grant R12-CE-10

    Mixing and non-premixed combustion at supercritical pressures

    Get PDF
    This thesis is devoted to the numerical investigation of mixing and non- premixed combustion of cryogenic propellants at supercritical pressures. These severe conditions are commonly encountered in high pressure combustion chambers, such as those of liquid-fueled rocket engines (LRE), and lead to significant deviations from the ideal gas thermodynamic behavior of the reacting mixtures. The non-premixed laminar flame structure of liquid oxygen (LOx) and methane or liquid natural gas (LNG) mixtures, a recently proposed LRE propellants com- bination, is investigated by means of a general fluid unsteady flamelet solver. Real gas effects are analyzed on prototypical unsteady flame phenomena such as autoignition and re-ignition/quenching caused by strain perturbations. Such effects influence different flame regions depending on pressure, as well as the critical strain values that a laminar flame can sustain before quenching occurs. Moreover the flame structure is also influenced by the composition of the LNG, in particular the early stage soot precursors production and oxidation. In order to shed light on real gas mixing, a low-Mach approximation for real gas reacting mixtures is presented. A single species non-reacting real gas model is implemented in a highly scalable spectral element computational fluid dynamic (CFD) code with state of the art thermodynamic and transport properties. Transcritical and supercritical planar temporal jets, are chosen as representative test cases for investigating high-pressure mixing by means of direct numerical simulations. The pseudo-boiling phenomenon, occurring in transcritical flows, significantly influences the jet development, mitigating the development of shear layer instabilities and leading to a liquid-like jet break-up. Moreover pseudo-boiling is confined in a narrow spatial region suggesting particular care in the turbulent combustion modeling of non-premixed flames when transcritical thermodynamic conditions are encountered. The results of the present thesis, its physical insights as well as the modeling considerations involved, can be of support in the development of future CFD tools capable of simulating real engine operative conditions and configurations

    Flamelet/progress variable modelling and flame structure analysis of partially premixed flames

    Get PDF
    This dissertation addresses the analysis of partially premixed flame configurations and the detection and characterization of their local flame regimes. First, the identification of flame regimes in experimental data is intensively discussed. Current methods for combustion regime characterization, such as the flame index, rely on 3D gradient information that is not accessible with available experimental techniques. Here, a method is proposed for reaction zone detection and characterization, which can be applied to instantaneous 1D Raman/Rayleigh line measurements of major species and temperature as well as to the results of laminar and turbulent flame simulations, without the need for 3D gradient information. Several derived flame markers, namely the mixture fraction, the heat release rate and the chemical explosive mode, are combined to detect and characterize premixed versus non-premixed reaction zones. The methodology is developed and evaluated using fully resolved simulation data from laminar flames. The fully resolved 1D simulation data are spatially filtered to account for the difference in spatial resolution between the experiment and the simulation, and experimental uncertainty is superimposed onto the filtered numerical results to produce Raman/Rayleigh equivalent data. Then, starting from just the temperature and major species, a constrained homogeneous batch reactor calculation gives an approximation of the full thermochemical state at each sample location. Finally, the chemical explosive mode and the heat release rate are calculated from this approximated state and compared to those calculated directly from the simulation data. After successful validation, the approach is applied to Raman/Rayleigh line measurements from laminar counterflow flames, a mildly turbulent lifted flame and turbulent benchmark cases. The results confirm that the reaction zones can be reliably detected and characterized using experimental data. In contrast to other approaches, the presented methodology circumvents uncertainties arising from the use of limited gradient information and offers an alternative to known reaction zone identification methods. Second, this work focuses on the flame structure of partially premixed dimethyl ether (DME) flames. DME flames form significant intermediate hydrocarbons in the reaction zone and are classified as the next more complex fuel candidate in research after methane. To simulate DME combustion processes, accurate predictions by computational combustion models are required. To evaluate such models and to identify appropriate flame regimes, numerical simulations are necessary. Therefore, fully resolved simulations of laminar dimethyl ether flames, defined by different levels of premixing, are performed. Further, the qualitative two-dimensional structures of the partially premixed DME flames are discussed and analyses are carried out at selected slices and compared to each other as well as to experimental data. Further, the flamelet/progress variable (FPV) approach is investigated to predict the partially premixed flame structures of the DME flames. In the context of the FPV approach, a rigorous analysis of the underlying manifold is carried out based on the newly developed regime identification approach and an a priori analysis. The most promising flamelet look-up table is chosen for the fully coupled tabulated chemistry simulations and the results are further compared to the fully resolved simulation data

    A DNS study of the physical mechanisms associated with density ratio influence on turbulent burning velocity in premixed flames

    Get PDF
    International audienceData obtained in 3D direct numerical simulations of statistically planar, 1D weakly turbulent flames characterized by different density ratios σ are analyzed in order to study the influence of thermal expansion on flame surface area and turbulent burning rate. Obtained results show that, on the one hand, pressure gradient induced within the flame brush due to heat release in flamelets significantly accelerates unburned gas that deeply intrudes into combustion products in a form of an unburned mixture finger, thus, causing large-scale oscillations of the turbulent burning rate and flame brush thickness. Under conditions of the present simulations, contribution of this mechanism to creation of flame surface area is substantial and is increased by the density ratio, thus, implying an increase in the burning rate by σ. On the other hand, the total flame surface areas simulated at σ = 7.53 and 2.5 are approximately equal to one another. Apparent inconsistency between these results implies existence of another thermal expansion effect that reduces the influence of the density ratio on the flame surface area and burning rate. Investigation of the issue shows that the axial flow acceleration by the combustion-induced pressure gradient not only straightforwardly creates flame surface area by pushing a finger tip into products, but also mitigates wrinkling of the flame surface (the side surface of the finger) by turbulent eddies. The latter effect is attributed to a high-speed (at σ = 7.53) axial 1 flow (a jet) of unburned gas, which is induced by the axial pressure gradient within the flame brush (and the finger). This axial flow acceleration reduces a residence time of a turbulent eddy in an unburned zone of the flame brush (e.g. within the finger). Therefore, the capability of the eddy for wrinkling the flamelet surface (e.g. the side finger surface) is weakened due to a shorter residence time
    corecore