19,860 research outputs found

    Distributed situation awareness in dynamic systems: Theoretical development and application of an ergonomics methodology

    Get PDF
    The purpose of this paper is to propose foundations for a theory of situation awareness based on the analysis of interactions between agents (i.e., both human and non-human) in subsystems. This approach may help promote a better understanding of technology-mediated interaction in systems, as well as helping in the formulation of hypotheses and predictions concerning distributed situation awareness. It is proposed that agents within a system each hold their own situation awareness which may be very different from (although compatible with) other agents. It is argued that we should not always hope for, or indeed want, sharing of this awareness, as different system agents have different purposes. This view marks situation awareness as a 1 dynamic and collaborative process that binds agents together on tasks on a moment-by-moment basis. Implications of this viewpoint for development of a new theory of, and accompanying methodology for, distributed situation awareness are offered

    A Multi-Objective Approach to Tactical Maneuvering Within Real Time Strategy Games

    Get PDF
    The real time strategy (RTS) environment is a strong platform for simulating complex tactical problems. The overall research goal is to develop artificial intelligence (AI) RTS planning agents for military critical decision making education. These agents should have the ability to perform at an expert level as well as to assess a players critical decision-making ability or skill-level. The nature of the time sensitivity within the RTS environment creates very complex situations. Each situation must be analyzed and orders must be given to each tactical unit before the scenario on the battlefield changes and makes the decisions no longer relevant. This particular research effort of RTS AI development focuses on constructing a unique approach for tactical unit positioning within an RTS environment. By utilizing multiobjective evolutionary algorithms (MOEAs) for finding an \optimal positioning solution, an AI agent can quickly determine an effective unit positioning solution with a fast, rapid response. The development of such an RTS AI agent goes through three distinctive phases. The first of which is mathematically describing the problem space of the tactical positioning of units within a combat scenario. Such a definition allows for the development of a generic MOEA search algorithm that is applicable to nearly every scenario. The next major phase requires the development and integration of this algorithm into the Air Force Institute of Technology RTS AI agent. Finally, the last phase involves experimenting with the positioning agent in order to determine the effectiveness and efficiency when placed against various other tactical options. Experimental results validate that controlling the position of the units within a tactical situation is an effective alternative for an RTS AI agent to win a battle

    Game Theory and Prescriptive Analytics for Naval Wargaming Battle Management Aids

    Get PDF
    NPS NRP Technical ReportThe Navy is taking advantage of advances in computational technologies and data analytic methods to automate and enhance tactical decisions and support warfighters in highly complex combat environments. Novel automated techniques offer opportunities to support the tactical warfighter through enhanced situational awareness, automated reasoning and problem-solving, and faster decision timelines. This study will investigate how game theory and prescriptive analytics methods can be used to develop real-time wargaming capabilities to support warfighters in their ability to explore and evaluate the possible consequences of different tactical COAs to improve tactical missions. This study will develop a conceptual design of a real-time tactical wargaming capability. This study will explore data analytic methods including game theory, prescriptive analytics, and artificial intelligence (AI) to evaluate their potential to support real-time wargaming.N2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Planning the Size and Organization of KLM's Aircraft Maintenance Personnel

    Get PDF
    Develops a decision support system (DSS) for the aircraft maintenance department of KLM Royal Dutch Airlines at Schiphol Airport in Amsterdam, Netherlands. Tasks of the department; Support provided by the DSS to management; Analyzing several capacity planning problems related to the size and the organization of the workforce

    The Endowment Challenge

    Get PDF
    The financial crisis of 2008 is nearly five years behind us, yet its impact on nonprofit organizations persists. The bull market that began in the early 1980s delivered historically strong returns for most long-term investment portfolios through 2008, but the factors that contributed to that performance may have run their course. Equity returns weakened over the past decade, and despite better results from bonds, overall portfolio returns have declined. Looking ahead, inflation is likely to remain low, but investment returns are also expected to be lower for the next few market cycles within more volatile markets. This will make it difficult for nonprofits to rebound from portfolio losses suffered in the 2008 downturn. Nonprofits face a "New Reality" of lower returns, higher volatility and increased scrutiny from boards and regulators. This paper discusses the challenges and opportunities nonprofit organizations face in a changing market environment
    corecore