502 research outputs found

    LASSO-OPTIMAL SUPERSATURATED DESIGN AND ANALYSIS FOR FACTOR SCREENING IN SIMULATION EXPERIMENTS

    Get PDF
    Complex systems such as large-scale computer simulation models typically involve a large number of factors. When investigating such a system, screening experiments are often used to sift through these factors to identify a subgroup of factors that most significantly influence the interested response

    UTILIZING DESIGN STRUCTURE FOR IMPROVING DESIGN SELECTION AND ANALYSIS

    Get PDF
    Recent work has shown that the structure for design plays a role in the simplicity or complexity of data analysis. To increase the knowledge of research in these areas, this dissertation aims to utilize design structure for improving design selection and analysis. In this regard, minimal dependent sets and block diagonal structure are both important concepts that are relevant to the orthogonality of the columns of a design. We are interested in finding ways to improve the data analysis especially for active effect detection by utilizing minimal dependent sets and block diagonal structure for design. We introduce a new classification criterion for minimal dependent sets to enhance existing criteria for design selection. The block diagonal structure of certain nonregular designs will also be discussed as a means of improving model selection. In addition, the block diagonal structure and the concept of parallel flats will be utilized to construct three-quarter nonregular designs. Based on the literature review on the effectiveness of the simulation study for slight the light on the success or failure of the proposed statistical method, in this dissertation, simulation studies were used to evaluate the efficacy of our proposed methods. The simulation results show that the minimal dependent sets can be used as a design selection criterion, and block-diagonal structure can also help to produce an effective model selection procedure. In addition, we found a strategy for constructing three-quarters of nonregular designs which depend on the orthogonality of the design columns. The results indicate that the structure of the design has an impact on developing data analysis and design selections. On this basis, it is recommended that analysts consider the structure of the design as a key factor in order to improve the analysis. Further research is needed to determine more concepts related to the structure of the design, which could help to improve data analysis

    A User's Guide to the Brave New World of Designing Simulation Experiments

    Get PDF
    Many simulation practitioners can get more from their analyses by using the statistical theory on design of experiments (DOE) developed specifically for exploring computer models.In this paper, we discuss a toolkit of designs for simulationists with limited DOE expertise who want to select a design and an appropriate analysis for their computational experiments.Furthermore, we provide a research agenda listing problems in the design of simulation experiments -as opposed to real world experiments- that require more investigation.We consider three types of practical problems: (1) developing a basic understanding of a particular simulation model or system; (2) finding robust decisions or policies; and (3) comparing the merits of various decisions or policies.Our discussion emphasizes aspects that are typical for simulation, such as sequential data collection.Because the same problem type may be addressed through different design types, we discuss quality attributes of designs.Furthermore, the selection of the design type depends on the metamodel (response surface) that the analysts tentatively assume; for example, more complicated metamodels require more simulation runs.For the validation of the metamodel estimated from a specific design, we present several procedures.

    Considerations for Screening Designs and Follow-Up Experimentation

    Get PDF
    The success of screening experiments hinges on the effect sparsity assumption, which states that only a few of the factorial effects of interest actually have an impact on the system being investigated. The development of a screening methodology to harness this assumption requires careful consideration of the strengths and weaknesses of a proposed experimental design in addition to the ability of an analysis procedure to properly detect the major influences on the response. However, for the most part, screening designs and their complementing analysis procedures have been proposed separately in the literature without clear consideration of their ability to perform as a single screening methodology. As a contribution to this growing area of research, this dissertation investigates the pairing of non-replicated and partially–replicated two-level screening designs with model selection procedures that allow for the incorporation of a model-independent error estimate. Using simulation, we focus attention on the ability to screen out active effects from a first order with two-factor interactions model and the possible benefits of using partial replication as part of an overall screening methodology. We begin with a focus on single-criterion optimum designs and propose a new criterion to create partially replicated screening designs. We then extend the newly proposed criterion into a multi-criterion framework where estimation of the assumed model in addition to protection against model misspecification are considered. This is an important extension of the work since initial knowledge of the system under investigation is considered to be poor in the cases presented. A methodology to reduce a set of competing design choices is also investigated using visual inspection of plots meant to represent uncertainty in design criterion preferences. Because screening methods typically involve sequential experimentation, we present a final investigation into the screening process by presenting simulation results which incorporate a single follow-up phase of experimentation. In this concluding work we extend the newly proposed criterion to create optimal partially replicated follow-up designs. Methodologies are compared which use different methods of incorporating knowledge gathered from the initial screening phase into the follow-up phase of experimentation
    • …
    corecore