112,412 research outputs found

    Analyzing requirements of knowledge management systems with the support of agent organizations

    Get PDF
    Knowledge Management (KM) is considered by many organizations a key aspect in sustaining competitive advantage. Designing appropriate KM processes and enabling technology face considerable risks, as they must be shaped to respond to specific needs of the organizational environment. Thus, many systems are abandoned or fall into disuse because of inadequate understanding of the organizational context. This motivates current research, which tends to propose agent organizations as a useful paradigm for KM systems engineering. Following these approaches, organizations are analyzed as collective systems, composed of several agents, each of them autonomously producing and managing their own local data according to their own logic, needs, and interpretative schema, i.e. their goals and beliefs. These agents interact and coordinate for goal achievement defining a coherent local knowledge system. This paper presents a novel methodology for analyzing the requirements of a KM system based on an iterative workflow where a pivotal role is played by agent-oriented modeling. Within this approach, the needs for KM systems are traced back to the organization stakeholders’ goals. A case study is used to illustrate the methodology. The relationship of this work with current studies in agent organizations and organizational knowledge management is also discussed. Differently from other works, this methodology aims at offering a practical guideline to the analyst, pointing out the appropriate abstractions to be used in the different phases of the analysis

    The i* framework for goal-oriented modeling

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-39417-6i* is a widespread framework in the software engineering field that supports goal-oriented modeling of socio-technical systems and organizations. At its heart lies a language offering concepts such as actor, dependency, goal and decomposition. i* models resemble a network of interconnected, autonomous, collaborative and dependable strategic actors. Around this language, several analysis techniques have emerged, e.g. goal satisfaction analysis and metrics computation. In this work, we present a consolidated version of the i* language based on the most adopted versions of the language. We define the main constructs of the language and we articulate them in the form of a metamodel. Then, we implement this version and a concrete technique, goal satisfaction analys is based on goal propagation, using ADOxx. Throughout the chapter, we used an example based on open source software adoption to illustrate the concepts and test the implementation.Peer ReviewedPostprint (author's final draft

    Deriving Information Requirements from Responsibility Models

    Get PDF
    This paper describes research in understanding the requirements for complex information systems that are constructed from one or more generic COTS systems. We argue that, in these cases, behavioural requirements are largely defined by the underlying system and that the goal of the requirements engineering process is to understand the information requirements of system stakeholders. We discuss this notion of information requirements and propose that an understanding of how a socio-technical system is structured in terms of responsibilities is an effective way of discovering this type of requirement. We introduce the idea of responsibility modelling and show, using an example drawn from the domain of emergency planning, how a responsibility model can be used to derive information requirements for a system that coordinates the multiple agencies dealing with an emergency

    Construction of a taxonomy for requirements engineering commercial-off-the-shelf components

    Get PDF
    This article presents a procedure for constructing a taxonomy of COTS products in the field of Requirements Engineering (RE). The taxonomy and the obtained information reach transcendental benefits to the selection of systems and tools that aid to RE-related actors to simplify and facilitate their work. This taxonomy is performed by means of a goal-oriented methodology inspired in GBRAM (Goal-Based Requirements Analysis Method), called GBTCM (Goal-Based Taxonomy Construction Method), that provides a guide to analyze sources of information and modeling requirements and domains, as well as gathering and organizing the knowledge in any segment of the COTS market. GBTCM claims to promote the use of standards and the reuse of requirements in order to support different processes of selection and integration of components.Peer ReviewedPostprint (published version

    Theories about architecture and performance of multi-agent systems

    Get PDF
    Multi-agent systems are promising as models of organization because they are based on the idea that most work in human organizations is done based on intelligence, communication, cooperation, and massive parallel processing. They offer an alternative for system theories of organization, which are rather abstract of nature and do not pay attention to the agent level. In contrast, classical organization theories offer a rather rich source of inspiration for developing multi-agent models because of their focus on the agent level. This paper studies the plausibility of theoretical choices in the construction of multi-agent systems. Multi-agent systems have to be plausible from a philosophical, psychological, and organizational point of view. For each of these points of view, alternative theories exist. Philosophically, the organization can be seen from the viewpoints of realism and constructivism. Psychologically, several agent types can be distinguished. A main problem in the construction of psychologically plausible computer agents is the integration of response function systems with representational systems. Organizationally, we study aspects of the architecture of multi-agent systems, namely topology, system function decomposition, coordination and synchronization of agent processes, and distribution of knowledge and language characteristics among agents. For each of these aspects, several theoretical perspectives exist.

    An agent-based framework for selection of partners in dynamic virtual enterprises

    Get PDF
    Advances in computer networking technology and open system standards have made practically feasible to create and manage virtual enterprises. A virtual enterprise, VE, is usually defined as a temporary alliance of enterprises that come together to share their skills, core competencies, and resources in order to better respond to business opportunities, and whose cooperation is supported by computer networks. The materialization of this paradigm, although enabled by recent advances in communication technologies, computer networks and logistics, requires an appropriate architectural framework and support tools. In this paper we propose an agent-based model of a dynamic VE to support the different selection processes that are used in selecting the partners for a dynamic VE, where the partners of a VE are represented by agents. Such a framework will form the basis for tools that provide automated support for creation, and operation, of dynamic virtual enterprises
    • …
    corecore