2,572 research outputs found

    Analyzing Remote Server Locations for Personal Data Transfers in Mobile Apps

    Get PDF
    Abstract The prevalence of mobile devices and their capability to access high speed internet has transformed them into a portable pocket cloud interface. Being home to a wide range of users' personal data, mobile devices often use cloud servers for storage and processing. The sensitivity of a user's personal data demands adequate level of protection at the back-end servers. In this regard, the European Union Data Protection regulations (e.g., article 25.1) impose restriction on the locations of European users' personal data transfer. The matter of concern, however, is the enforcement of such regulations. The first step in this regard is to analyze mobile apps and identify the location of servers to which personal data is transferred. To this end, we design and implement an app analysis tool, PDTLoc (Personal Data Transfer Location Analyzer), to detect violation of the mentioned regulations. We analyze 1, 498 most popular apps in the EEA using PDTLoc to investigate the data recipient server locations. We found that 16.5% (242) of these apps transfer users' personal data to servers located at places outside Europe without being under the control of a data protection framework. Moreover, we inspect the privacy policies of the apps revealing that 51% of these apps do not provide any privacy policy while almost all of them contact the servers hosted outside Europe

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    The Dark Side(-Channel) of Mobile Devices: A Survey on Network Traffic Analysis

    Full text link
    In recent years, mobile devices (e.g., smartphones and tablets) have met an increasing commercial success and have become a fundamental element of the everyday life for billions of people all around the world. Mobile devices are used not only for traditional communication activities (e.g., voice calls and messages) but also for more advanced tasks made possible by an enormous amount of multi-purpose applications (e.g., finance, gaming, and shopping). As a result, those devices generate a significant network traffic (a consistent part of the overall Internet traffic). For this reason, the research community has been investigating security and privacy issues that are related to the network traffic generated by mobile devices, which could be analyzed to obtain information useful for a variety of goals (ranging from device security and network optimization, to fine-grained user profiling). In this paper, we review the works that contributed to the state of the art of network traffic analysis targeting mobile devices. In particular, we present a systematic classification of the works in the literature according to three criteria: (i) the goal of the analysis; (ii) the point where the network traffic is captured; and (iii) the targeted mobile platforms. In this survey, we consider points of capturing such as Wi-Fi Access Points, software simulation, and inside real mobile devices or emulators. For the surveyed works, we review and compare analysis techniques, validation methods, and achieved results. We also discuss possible countermeasures, challenges and possible directions for future research on mobile traffic analysis and other emerging domains (e.g., Internet of Things). We believe our survey will be a reference work for researchers and practitioners in this research field.Comment: 55 page

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    PrivacyGuard: A VPN-Based Approach to Detect Privacy Leakages on Android Devices

    Get PDF
    The Internet is now the most important and efficient way to gain information, and mobile devices are the easiest way to access the Internet. Furthermore, wearable devices, which can be considered to be the next generation of mobile devices, are becoming popular. The more people rely on mobile devices, the more private information about these people can be gathered from their devices. If a device is lost or compromised, much private information is revealed. Although today’s smartphone operating systems are trying to provide a secure environment, they still fail to provide users with adequate control over and visibility into how third-party applications use their private data. The privacy leakage problem on mobile devices is still severe. For example, according a field study [1] done by CMU recently, Android applications track users’ location every three minutes in average. After the PRISM program, a surveillance program done by NSA, is exposed, people are becoming increasingly aware of the mobile privacy leakages. However, there are few tools available to average users for privacy preserving. Most tools developed by recent work have some problems (details can be found in chapter 2). To address these problems, we present PrivacyGuard, an efficient way to simultaneously detect leakage of multiple types of sensitive data, such as a phone’s IMEI number or location data. PrivacyGuard provides real-time protection. It is possible to modify the leaked information and replace it with crafted data to achieve protection. PrivacyGuard is configurable, extensible and useful for other research. We implement PrivacyGuard on the Android platform by taking advantage of the VPNService class provided by the Android SDK. PrivacyGuard does not require root per- missions to run on a device and does not require any knowledge about VPN technology from users either. The VPN server runs on the device locally. No external servers are required. According to our experiments, PrivacyGuard can effectively detect privacy leak- ages of most applications and advertisement libraries with almost no overhead on power consumption and reasonable overhead on network speed

    Virtualisation and Thin Client : A Survey of Virtual Desktop environments

    Get PDF
    This survey examines some of the leading commercial Virtualisation and Thin Client technologies. Reference is made to a number of academic research sources and to prominent industry specialists and commentators. A basic virtualisation Laboratory model is assembled to demonstrate fundamental Thin Client operations and to clarify potential problem areas

    Enhancing Mobile Capacity through Generic and Efficient Resource Sharing

    Get PDF
    Mobile computing devices are becoming indispensable in every aspect of human life, but diverse hardware limits make current mobile devices far from ideal for satisfying the performance requirements of modern mobile applications and being used anytime, anywhere. Mobile Cloud Computing (MCC) could be a viable solution to bypass these limits which enhances the mobile capacity through cooperative resource sharing, but is challenging due to the heterogeneity of mobile devices in both hardware and software aspects. Traditional schemes either restrict to share a specific type of hardware resource within individual applications, which requires tremendous reprogramming efforts; or disregard the runtime execution pattern and transmit too much unnecessary data, resulting in bandwidth and energy waste.To address the aforementioned challenges, we present three novel designs of resource sharing frameworks which utilize the various system resources from a remote or personal cloud to enhance the mobile capacity in a generic and efficient manner. First, we propose a novel method-level offloading methodology to run the mobile computational workload on the remote cloud CPU. Minimized data transmission is achieved during such offloading by identifying and selectively migrating the memory contexts which are necessary to the method execution. Second, we present a systematic framework to maximize the mobile performance of graphics rendering with the remote cloud GPU, during which the redundant pixels across consecutive frames are reused to reduce the transmitted frame data. Last, we propose to exploit the unified mobile OS services and generically interconnect heterogeneous mobile devices towards a personal mobile cloud, which complement and flexibly share mobile peripherals (e.g., sensors, camera) with each other
    • 

    corecore