632 research outputs found

    Brain computer interface based robotic rehabilitation with online modification of task speed

    Get PDF
    We present a systematic approach that enables online modification/adaptation of robot assisted rehabilitation exercises by continuously monitoring intention levels of patients utilizing an electroencephalogram (EEG) based Brain-Computer Interface (BCI). In particular, we use Linear Discriminant Analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with motor imagery; however, instead of providing a binary classification output, we utilize posterior probabilities extracted from LDA classifier as the continuous-valued outputs to control a rehabilitation robot. Passive velocity field control (PVFC) is used as the underlying robot controller to map instantaneous levels of motor imagery during the movement to the speed of contour following tasks. In other words, PVFC changes the speed of contour following tasks with respect to intention levels of motor imagery. PVFC also allows decoupling of the task and the speed of the task from each other, and ensures coupled stability of the overall robot patient system. The proposed framework is implemented on AssistOn-Mobile - a series elastic actuator based on a holonomic mobile platform, and feasibility studies with healthy volunteers have been conducted test effectiveness of the proposed approach. Giving patients online control over the speed of the task, the proposed approach ensures active involvement of patients throughout exercise routines and has the potential to increase the efficacy of robot assisted therapies

    A Review on Brain-Controlled Home Automation

    Get PDF
    A "smart home" employs ambient intelligence to keep tabs on things around the house so that the owner may get services tailored to their specific needs and control their home appliances from afar. Home automation for the elderly and handicapped focuses on enabling older persons and those with disabilities to live safely and comfortably at home. Additionally, the integration of this technology with a brain-computer interface (BCI) is perhaps of tremendous usefulness to those who are either old or disabled. These BCI-based brain-controlled home automation (BCHA) systems have emerged as a viable option for people with neuro disorders to remain in their homes rather than move to assisted living facilities. To summarize, BCI-based BCHA for the elderly and handicapped people is transforming people's lives every day. Most individuals prefer a simple approach to save time and effort. Automating the house is the simplest way for individuals to save time and effort. The brain-computer interface, often known as a BCI, is an innovative method of human-computer connection that does not rely on conventional output channels (muscle tissue and peripheral nerve). Over the course of the last three decades, it has attracted the attention of industry experts and developed into a thriving centre for research. Brain-controlled home automation (BCHA), as a typical BCI application, may provide physically challenged people with a new communication route with the outside world. However, the primary challenge that BCHA faces is to rapidly decipher multi-degree-of-freedom control instructions extracted from an electroencephalogram (EEG). The BCHA's research has made significant headway in a short amount of time during the last fifteen years. This study investigates the BCHA from several viewpoints, including the pattern of instructions for the control system, the type of signal acquisition, and the operational mechanism of the control system itself. This paper a concise description of the building blocks of smart homes and how they may be used to construct BCI-controlled home automation to assist disabled individuals. It is a compilation of information pertaining to communication protocols, multimedia devices, sensors, and systems that are often used in the process of putting smart homes into action. A comprehensive strategy for developing a functional and sustainable BCI-controlled home automation system is laid out in this paper as well, which could be useful to researchers in the future

    Past, Present, and Future of EEG-Based BCI Applications

    Get PDF
    An electroencephalography (EEG)-based brain–computer interface (BCI) is a system that provides a pathway between the brain and external devices by interpreting EEG. EEG-based BCI applications have initially been developed for medical purposes, with the aim of facilitating the return of patients to normal life. In addition to the initial aim, EEG-based BCI applications have also gained increasing significance in the non-medical domain, improving the life of healthy people, for instance, by making it more efficient, collaborative and helping develop themselves. The objective of this review is to give a systematic overview of the literature on EEG-based BCI applications from the period of 2009 until 2019. The systematic literature review has been prepared based on three databases PubMed, Web of Science and Scopus. This review was conducted following the PRISMA model. In this review, 202 publications were selected based on specific eligibility criteria. The distribution of the research between the medical and non-medical domain has been analyzed and further categorized into fields of research within the reviewed domains. In this review, the equipment used for gathering EEG data and signal processing methods have also been reviewed. Additionally, current challenges in the field and possibilities for the future have been analyzed

    A Human-Centric Metaverse Enabled by Brain-Computer Interface: A Survey

    Full text link
    The growing interest in the Metaverse has generated momentum for members of academia and industry to innovate toward realizing the Metaverse world. The Metaverse is a unique, continuous, and shared virtual world where humans embody a digital form within an online platform. Through a digital avatar, Metaverse users should have a perceptual presence within the environment and can interact and control the virtual world around them. Thus, a human-centric design is a crucial element of the Metaverse. The human users are not only the central entity but also the source of multi-sensory data that can be used to enrich the Metaverse ecosystem. In this survey, we study the potential applications of Brain-Computer Interface (BCI) technologies that can enhance the experience of Metaverse users. By directly communicating with the human brain, the most complex organ in the human body, BCI technologies hold the potential for the most intuitive human-machine system operating at the speed of thought. BCI technologies can enable various innovative applications for the Metaverse through this neural pathway, such as user cognitive state monitoring, digital avatar control, virtual interactions, and imagined speech communications. This survey first outlines the fundamental background of the Metaverse and BCI technologies. We then discuss the current challenges of the Metaverse that can potentially be addressed by BCI, such as motion sickness when users experience virtual environments or the negative emotional states of users in immersive virtual applications. After that, we propose and discuss a new research direction called Human Digital Twin, in which digital twins can create an intelligent and interactable avatar from the user's brain signals. We also present the challenges and potential solutions in synchronizing and communicating between virtual and physical entities in the Metaverse

    Electroencephalography (EEG), electromyography (EMG) and eye-tracking for astronaut training and space exploration

    Full text link
    The ongoing push to send humans back to the Moon and to Mars is giving rise to a wide range of novel technical solutions in support of prospective astronaut expeditions. Against this backdrop, the European Space Agency (ESA) has recently launched an investigation into unobtrusive interface technologies as a potential answer to such challenges. Three particular technologies have shown promise in this regard: EEG-based brain-computer interfaces (BCI) provide a non-invasive method of utilizing recorded electrical activity of a user's brain, electromyography (EMG) enables monitoring of electrical signals generated by the user's muscle contractions, and finally, eye tracking enables, for instance, the tracking of user's gaze direction via camera recordings to convey commands. Beyond simply improving the usability of prospective technical solutions, our findings indicate that EMG, EEG, and eye-tracking could also serve to monitor and assess a variety of cognitive states, including attention, cognitive load, and mental fatigue of the user, while EMG could furthermore also be utilized to monitor the physical state of the astronaut. In this paper, we elaborate on the key strengths and challenges of these three enabling technologies, and in light of ESA's latest findings, we reflect on their applicability in the context of human space flight. Furthermore, a timeline of technological readiness is provided. In so doing, this paper feeds into the growing discourse on emerging technology and its role in paving the way for a human return to the Moon and expeditions beyond the Earth's orbit

    Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario

    Get PDF
    Virtual Reality (VR) environments can be applied to assistive robotics to improve the effectiveness and the user experience perception in the rehabilitation process due to its innovative nature, getting to entertain patients while they recover their motor functions. This literature review pretends to analyze some design principles of VR environments developed for upper limb rehabilitation processes. The idea is to identify features related to peripheral and central nervous systems, types of information included as feedback to increase the user's levels of immersion having a positive impact on the user's performance and experience during the treatment. A total of 32 articles published in Scopus, IEEE, PubMed, and Web of Science in the last four years were reviewed. We present the article selection process, the division by concepts presented previously, and the guidelines that can be considered for the design of VR environments applicable to assistive robots for upper limbs rehabilitation processes.Los entornos de Realidad Virtual (RV) aplicables a sistemas de robótica asistencial pueden ser diseñados de manera que mejoren la efectividad y la experiencia de usuario de los procesos de rehabilitación debido a su naturaleza novedosa, logrando entretener a los pacientes mientras recuperan sus funciones motoras. Esta revisión literaria pretende analizar los criterios de diseño de entornos de RV utilizados en procesos de rehabilitación de miembro superior, identificando las características de entornos para rehabilitación de problemas asociados el sistema nervioso central y periféricos, los tipos de información que se realimenta al usuario para beneficiar los niveles de inmersión y su impacto en términos del desempeño y la experiencia del usuario en tratamiento. Un total de 32 artículos publicados en revistas indexadas de Scopus, IEEE, PubMed y Web of Science en los últimos cuatro años fueron revisados. Se presenta el proceso de selección de artículos, la división por las temáticas presentadas anteriormente y los lineamientos generales que pueden ser considerados para el diseño de entornos de RV aplicables a robots asistenciales en procesos de rehabilitación de miembro superior

    In silico vs. Over the Clouds: On-the-Fly Mental State Estimation of Aircraft Pilots, Using a Functional Near Infrared Spectroscopy Based Passive-BCI

    Get PDF
    There is growing interest for implementing tools to monitor cognitive performance in naturalistic work and everyday life settings. The emerging field of research, known as neuroergonomics, promotes the use of wearable and portable brain monitoring sensors such as functional near infrared spectroscopy (fNIRS) to investigate cortical activity in a variety of human tasks out of the laboratory. The objective of this study was to implement an on-line passive fNIRS-based brain computer interface to discriminate two levels of working memory load during highly ecological aircraft piloting tasks. Twenty eight recruited pilots were equally split into two groups (flight simulator vs. real aircraft). In both cases, identical approaches and experimental stimuli were used (serial memorization task, consisting in repeating series of pre-recorded air traffic control instructions, easy vs. hard). The results show pilots in the real flight condition committed more errors and had higher anterior prefrontal cortex activation than pilots in the simulator, when completing cognitively demanding tasks. Nevertheless, evaluation of single trial working memory load classification showed high accuracy (>76%) across both experimental conditions. The contributions here are two-fold. First, we demonstrate the feasibility of passively monitoring cognitive load in a realistic and complex situation (live piloting of an aircraft). In addition, the differences in performance and brain activity between the two experimental conditions underscore the need for ecologically-valid investigations
    corecore