1,588 research outputs found

    Improving the Decision-Making Process of Self-Adaptive Systems by Accounting for Tactic Volatility

    Full text link
    When self-adaptive systems encounter changes within their surrounding environments, they enact tactics to perform necessary adaptations. For example, a self-adaptive cloud-based system may have a tactic that initiates additional computing resources when response time thresholds are surpassed, or there may be a tactic to activate a specific security measure when an intrusion is detected. In real-world environments, these tactics frequently experience tactic volatility which is variable behavior during the execution of the tactic. Unfortunately, current self-adaptive approaches do not account for tactic volatility in their decision-making processes, and merely assume that tactics do not experience volatility. This limitation creates uncertainty in the decision-making process and may adversely impact the system's ability to effectively and efficiently adapt. Additionally, many processes do not properly account for volatility that may effect the system's Service Level Agreement (SLA). This can limit the system's ability to act proactively, especially when utilizing tactics that contain latency. To address the challenge of sufficiently accounting for tactic volatility, we propose a Tactic Volatility Aware (TVA) solution. Using Multiple Regression Analysis (MRA), TVA enables self-adaptive systems to accurately estimate the cost and time required to execute tactics. TVA also utilizes Autoregressive Integrated Moving Average (ARIMA) for time series forecasting, allowing the system to proactively maintain specifications

    TVA: A Requirements Driven, Machine-Learning Approach for Addressing Tactic Volatility in Self-Adaptive Systems

    Get PDF
    From self-driving cars to self-adaptive websites, the world is increasingly becoming more reliant on autonomous systems. Similar to many other domains, the system\u27s behavior is often determined by its requirements. For example, a self-adaptive web service is likely to have some maximum value that response time should not surpass. To maintain this requirement, the system uses tactics, which may include activating additional computing resources. In real-world environments, tactics will frequently experience volatility, known as tactic volatility. This can include unstable time required to execute the tactic or frequent fluctuations in the cost to execute the tactic. Unfortunately, current self-adaptive approaches do not account for tactic volatility in their decision-making processes, and merely assume that tactics have static attributes. To address the limitations in current processes, we propose a Tactic Volatility Aware (TVA) solution. Our approach focuses on providing a volatility aware solution that enables the system to properly maintain requirements. Specifically, TVA utilizes a Autoregressive Integrated Moving Average Model (ARIMA) to estimate potential future values for requirements, while also using a Multiple Regression Analysis (MRA) model to make predictions of tactic latency and tactic cost at runtime. This enables the system to both better estimate the true behavior of its tactics and it allows the system to properly maintain its requirements. Using data containing real-world volatility, we demonstrate the effectiveness of using TVA with both statistical analysis methods and self-adaptive experiments. In this work, we demonstrate (I) The negative impact of not accounting for tactic volatility (II) The benefits of a ARIMA-modeling approach in monitoring system requirements (III) The effectiveness of MRA in predicting tactic volatility (IV) The overall benefits of TVA to the self-adaptive process. This work also presents the first known publicly available dataset of real-world tactic volatility in terms of both cost and latency

    Cooperative Game Theory and Its Application in Localization Algorithms

    Get PDF
    Complementary medicin

    How Computer Networks Can Become Smart

    Get PDF

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Evolutionary Game Theoretic Multi-Objective Optimization Algorithms and Their Applications

    Get PDF
    Multi-objective optimization problems require more than one objective functions to be optimized simultaneously. They are widely applied in many science fields, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conicting objectives. Most of the real world multi-objective optimization problems are NP-Hard problems. It may be too computationally costly to find an exact solution but sometimes a near optimal solution is sufficient. In these cases, Multi-Objective Evolutionary Algorithms (MOEAs) provide good approximate solutions to problems that cannot be solved easily using other techniques. However Evolutionary Algorithm is not stable due to its random nature, it may produce very different results every time it runs. This dissertation proposes an Evolutionary Game Theory (EGT) framework based algorithm (EGTMOA) that provides optimality and stability at the same time. EGTMOA combines the notion of stability from EGT and optimality from MOEA to form a novel and promising algorithm to solve multi-objective optimization problems. This dissertation studies three different multi-objective optimization applications, Cloud Virtual Machine Placement, Body Sensor Networks, and Multi-Hub Molecular Communication along with their proposed EGTMOA framework based algorithms. Experiment results show that EGTMOAs outperform many well known multi-objective evolutionary algorithms in stability, performance and runtime

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications
    • …
    corecore