88 research outputs found

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Communications protocols for wireless sensor networks in perturbed environment

    Get PDF
    This thesis is mainly in the Smart Grid (SG) domain. SGs improve the safety of electrical networks and allow a more adapted use of electricity storage, available in a limited way. SGs also increase overall energy efficiency by reducing peak consumption. The use of this technology is the most appropriate solution because it allows more efficient energy management. In this context, manufacturers such as Hydro-Quebec deploy sensor networks in the nerve centers to control major equipment. To reduce deployment costs and cabling complexity, the option of a wireless sensor network seems the most obvious solution. However, deploying a sensor network requires in-depth knowledge of the environment. High voltages substations are strategic points in the power grid and generate impulse noise that can degrade the performance of wireless communications. The works in this thesis are focused on the development of high performance communication protocols for the profoundly disturbed environments. For this purpose, we have proposed an approach based on the concatenation of rank metric and convolutional coding with orthogonal frequency division multiplexing. This technique is very efficient in reducing the bursty nature of impulsive noise while having a quite low level of complexity. Another solution based on a multi-antenna system is also designed. We have proposed a cooperative closed-loop coded MIMO system based on rank metric code and max−dmin precoder. The second technique is also an optimal solution for both improving the reliability of the system and energy saving in wireless sensor networks

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    MIMO underwater acoustic communications over time-varying channels: from theory to practice

    Get PDF
    Despite more than 70% of our planet surface is covered by water, today the underwater world can still be considered largely unknown. Rivers, lakes, seas and oceans have always been a fundamental resource for human life development, but at the same time they have often represented natural obstacles very hard to surmount. The most impressive example is probably given by the ocean, whose vastness severely limited geographical explorations and discoveries for tens of centuries. Anyway, the growing curiosity about what happens below the water surface has gradually led man to immerse in this unknown environment, trying to overcome its inaccessibility and figure out its secrets. Underwater investigation and exploring have been increasingly supported by technology, advanced over time for different purposes (military, commercial, scientific). In this regard, providing a communication link between remote users has been recognized as one of the main issues to be addressed. The first significant solutions derived from the radio-frequency world, subject of study since the 19th century. Unfortunately both wired and wireless RF inspired signal propagation strategies were not evaluated as successful. The former ones, since considering the deployment of meters (up to kilometers) of cable in depth, were too costly and difficult, while the latter ones did not offer good performance in terms of communication range due to signal attenuation. An alternative way, examined with particular interest from the beginning of the 20th century, has been that one offered by acoustics. Actually, the study of sound and its propagation through different media has been an intriguing topic since the Old World Age, hence the attempt of messaging underwater has seemed to be a great opportunity to convey theoretical principles in a real application. In addition, not only humans but also marine animals use acoustic waves to communicate, even over several kilometers distances as demonstrated by whales. So, since already existing in nature, acoustic communications have been considered as potentially successful, furthermore representing an effective trade-off between feasibility and performance, especially if compared to the other electromagnetic signals-based methods. Communication over RF channels has been extensively investigated so as to become a mature technology. The thorough knowledge about OSI (Open Systems Interconnection) model physical layer issues has allowed the researchers attention to be drawn to the upper layers. Following this direction, the recent advances in technology in this field have been accomplished mainly due to novelties in networks managing rather than to enhancements in the signal propagation study. Moving to acoustics, unfortunately this approach results to be failing if applied in the underwater scenario, as the major challenges rise indeed from physics matters. The underwater environment is varied and variable, so understanding the mechanisms that govern the propagation of sound in water is a key element for the design of a well-performing communication system. In this sense, the physical layer has therefore regained the centrality that has been diminished in other contexts. The underwater acoustic communications can be adopted in a wide range of applications. The best-known are coastal monitoring, target detection, AUVs (Autonomous Underwater Vehicles) remote control, tsunami alarm, environmental data collection and transmission. Those ones are very specific activities, so the devices to be employed must sometimes meet very strict requirements. In this regard, the solutions commercially available provide good performance (that are paid in terms of high costs). On the other hand, the fact that hardware and software are usually copyrighted leads to have a closed system. Having reconfigurable devices is instead an opportunity to match the technology with the environment features and variations, especially in real-time applications. Recently, the need to overcome these constraints has encouraged the debate about underwater technology challenges. The work by Demirors et al. [1] reports an interesting discussion about the implementation of software-defined underwater acoustic networks (UWANs), highlighting how this solution can provide enhancements in terms of software portability, computational capacity, energy efficiency and real-time reconfigurability. Furthermore, the authors propose the architecture of a software-defined acoustic modem and evaluate its performance and capabilities with tank and lake experiments. Considering the comments outlined above, the following dissertation deals with the design of an acoustic communication system. The preliminary theoretical analysis regarding physical layer concerns, such as signal propagation and channel behavior, represents the starting point from which several proposals regarding the implementation of UWANs are introduced. In particular the context of Multiple-Input Multiple-Output (MIMO) communications is investigated, presenting several solutions about transmission schemes and receiver implementation. Furthermore, concerning UWANs management, some strategies for access and error control, established at the data link layer level, are detailed. It is worth highlighting that the goal of this contribution is not to present a disjointed discussion about the topics just listed. The objective is instead to propose practical solutions developed hand in hand with theory, making choices firstly by looking at what nature allows

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Advanced OFDM systems for terrestrial multimedia links

    Get PDF
    Recently, there has been considerable discussion about new wireless technologies and standards able to achieve high data rates. Due to the recent advances of digital signal processing and Very Large Scale Integration (VLSI) technologies, the initial obstacles encountered for the implementation of Orthogonal Frequency Division Multiplexing (OFDM) modulation schemes, such as massive complex multiplications and high speed memory accesses, do not exist anymore. OFDM offers strong multipath protection due to the insertion of the guard interval; in particular, the OFDM-based DVB-T standard had proved to offer excellent performance for the broadcasting of multimedia streams with bitrates over ten megabits per second in difficult terrestrial propagation channels, for fixed and portable applications. Nevertheless, for mobile scenarios, improving the receiver design is not enough to achieve error-free transmission especially in presence of deep shadow and multipath fading and some modifications of the standard can be envisaged. To address long and medium range applications like live mobile wireless television production, some further modifications are required to adapt the modulated bandwidth and fully exploit channels up to 24MHz wide. For these reasons, an extended OFDM system is proposed that offers variable bandwidth, improved protection to shadow and multipath fading and enhanced robustness thanks to the insertion of deep time-interleaving coupled with a powerful turbo codes concatenated error correction scheme. The system parameters and the receiver architecture have been described in C++ and verified with extensive simulations. In particular, the study of the receiver algorithms was aimed to achieve the optimal tradeoff between performances and complexity. Moreover, the modulation/demodulation chain has been implemented in VHDL and a prototype system has been manufactured. Ongoing field trials are demonstrating the ability of the proposed system to successfully overcome the impairments due to mobile terrestrial channels, like multipath and shadow fading. For short range applications, Time-Division Multiplexing (TDM) is an efficient way to share the radio resource between multiple terminals. The main modulation parameters for a TDM system are discussed and it is shown that the 802.16a TDM OFDM physical layer fulfills the application requirements; some practical examples are given. A pre-distortion method is proposed that exploit the reciprocity of the radio channel to perform a partial channel inversion achieving improved performances with no modifications of existing receivers

    Classification and modeling of power line noise using machine learning techniques

    Get PDF
    A thesis submitted in ful lment of the requirements for the degree of Doctor of Philosophy in the School of Electrical and Information Engineering Faculty of Engineering and Built Environment June 2017The realization of robust, reliable and e cient data transmission have been the theme of recent research, most importantly in real channel such as the noisy, fading prone power line communication (PLC) channel. The focus is to exploit old techniques or create new techniques capable of improving the transmission reliability and also increasing the transmission capacity of the real communication channels. Multi-carrier modulation scheme such as Orthogonal Frequency Division Multiplexing (OFDM) utilizing conventional single-carrier modulation is developed to facilitate a robust data transmission, increasing transmission capacity (e cient bandwidth usage) and further reducing design complexity in PLC systems. On the contrary, the reliability of data transmission is subjected to several inhibiting factors as a result of the varying nature of the PLC channel. These inhibiting factors include noise, perturbation and disturbances. Contrary to the Additive White Gaussian noise (AWGN) model often assumed in several communication systems, this noise model fails to capture the attributes of noise encountered on the PLC channel. This is because periodic noise or random noise pulses injected by power electronic appliances on the network is a deviation from the AWGN. The nature of the noise is categorized as non-white non-Gaussian and unstable due to its impulsive attributes, thus, it is labeled as Non-additive White Gaussian Noise (NAWGN). These noise and disturbances results into long burst errors that corrupts signals being transmitted, thus, the PLC is labeled as a horrible or burst error channel. The e cient and optimal performance of a conventional linear receiver in the white Gaussian noise environment can therefore be made to drastically degrade in this NAWGN environment. Therefore, transmission reliability in such environment can be greatly enhanced if we know and exploit the knowledge of the channel's statistical attributes, thus, the need for developing statistical channel model based on empirical data. In this thesis, attention is focused on developing a recon gurable software de ned un-coded single-carrier and multicarrier PLC transceiver as a tool for realizing an optimized channel model for the narrowband PLC (NB-PLC) channel. First, a novel recon gurable software de ned un-coded single-carrier and multi-carrier PLC transceiver is developed for real-time NB-PLC transmission. The transceivers can be adapted to implement di erent waveforms for several real-time scenarios and performance evaluation. Due to the varying noise parameters obtained from country to country as a result of the dependence of noise impairment on mains voltages, topology of power line, place and time, the developed transceivers is capable of facilitating constant measurement campaigns to capture these varying noise parameters before statistical and mathematically inclined channel models are derived. Furthermore, the single-carrier (Binary Phase Shift Keying (BPSK), Di erential BPSK (DBPSK), Quadrature Phase Shift Keying (QPSK) and Di erential QPSK (DQPSK)) PLC transceiver system developed is used to facilitate a First-Order semi-hidden Fritchman Markov modeling (SHFMM) of the NB-PLC channel utilizing the e cient iterative Baum- Welch algorithm (BWA) for parameter estimation. The performance of each modulation scheme is evaluated in a mildly and heavily disturbed scenarios for both residential and laboratory site considered. The First-Order estimated error statistics of the realized First- Order SHFMM have been analytically validated in terms of performance metrics such as: log-likelihood ratio (LLR), error-free run distribution (EFRD), error probabilities, mean square error (MSE) and Chi-square ( 2) test. The reliability of the model results is also con rmed by an excellent match between the empirically obtained error sequence and the SHFMM regenerated error sequence as shown by the error-free run distribution plot. This thesis also reports a novel development of a low cost, low complexity Frequency-shift keying (FSK) - On-o keying (OOK) in-house hybrid PLC and VLC system. The functionality of this hybrid PLC-VLC transceiver system was ascertained at both residential and laboratory site at three di erent times of the day: morning, afternoon and evening. A First and Second-Order SHFMM of the hybrid system is realized. The error statistics of the realized First and Second-Order SHFMMs have been analytically validated in terms of LLR, EFRD, error probabilities, MSE and Chi-square ( 2). The Second-Order SHFMMs have also been analytically validated to be superior to the First-Order SHFMMs although at the expense of added computational complexity. The reliability of both First and Second-Order SHFMM results is con rmed by an excellent match between the empirical error sequences and SHFMM re-generated error sequences as shown by the EFRD plot. In addition, the multi-carrier (QPSK-OFDM, Di erential QPSK (DQPSK)-OFDM) and Di erential 8-PSK (D8PSK)-OFDM) PLC transceiver system developed is used to facilitate a First and Second-Order modeling of the NB-PLC system using the SHFMM and BWA for parameter estimation. The performance of each OFDM modulation scheme in evaluated and compared taking into consideration the mildly and heavily disturbed noise scenarios for the two measurement sites considered. The estimated error statistics of the realized SHFMMs have been analytically validated in terms of LLR, EFRD, error probabilities, MSE and Chi-square ( 2) test. The estimated Second-Order SHFMMs have been analytically validated to be outperform the First-Order SHFMMs although with added computational complexity. The reliability of the models is con rmed by an excellent match between the empirical data and SHFMM generated data as shown by the EFRD plot. The statistical models obtained using Baum-Welch to adjust the parameters of the adopted SHFMM are often locally maximized. To solve this problem, a novel Metropolis-Hastings algorithm, a Bayesian inference approach based on Markov Chain Monte Carlo (MCMC) is developed to optimize the parameters of the adopted SHFMM. The algorithm is used to optimize the model results obtained from the single-carrier and multi-carrier PLC systems as well as that of the hybrid PLC-VLC system. Consequently, as deduced from the results, the models obtained utilizing the novel Metropolis-Hastings algorithm are more precise, near optimal model with parameter sets that are closer to the global maxima. Generally, the model results obtained in this thesis are relevant in enhancing transmission reliability on the PLC channel through the use of the models to improve the adopted modulation schemes, create adaptive modulation techniques, develop and evaluate forward error correction (FEC) codes such as a concatenation of Reed-Solomon and Permutation codes and other robust codes suitable for exploiting and mitigating noise impairments encountered on the low voltage NB-PLC channel. Furthermore, the recon gurable software de ned NB-PLC transceiver test-bed developed can be utilized for future measurement campaign as well as adapted for multiple-input and multiple-output (MIMO) PLC applications.MT201

    Classification and modeling of power line noise using machine learning techniques

    Get PDF
    A thesis submitted in ful lment of the requirements for the degree of Doctor of Philosophy in the School of Electrical and Information Engineering Faculty of Engineering and Built Environment June 2017The realization of robust, reliable and e cient data transmission have been the theme of recent research, most importantly in real channel such as the noisy, fading prone power line communication (PLC) channel. The focus is to exploit old techniques or create new techniques capable of improving the transmission reliability and also increasing the transmission capacity of the real communication channels. Multi-carrier modulation scheme such as Orthogonal Frequency Division Multiplexing (OFDM) utilizing conventional single-carrier modulation is developed to facilitate a robust data transmission, increasing transmission capacity (e cient bandwidth usage) and further reducing design complexity in PLC systems. On the contrary, the reliability of data transmission is subjected to several inhibiting factors as a result of the varying nature of the PLC channel. These inhibiting factors include noise, perturbation and disturbances. Contrary to the Additive White Gaussian noise (AWGN) model often assumed in several communication systems, this noise model fails to capture the attributes of noise encountered on the PLC channel. This is because periodic noise or random noise pulses injected by power electronic appliances on the network is a deviation from the AWGN. The nature of the noise is categorized as non-white non-Gaussian and unstable due to its impulsive attributes, thus, it is labeled as Non-additive White Gaussian Noise (NAWGN). These noise and disturbances results into long burst errors that corrupts signals being transmitted, thus, the PLC is labeled as a horrible or burst error channel. The e cient and optimal performance of a conventional linear receiver in the white Gaussian noise environment can therefore be made to drastically degrade in this NAWGN environment. Therefore, transmission reliability in such environment can be greatly enhanced if we know and exploit the knowledge of the channel's statistical attributes, thus, the need for developing statistical channel model based on empirical data. In this thesis, attention is focused on developing a recon gurable software de ned un-coded single-carrier and multicarrier PLC transceiver as a tool for realizing an optimized channel model for the narrowband PLC (NB-PLC) channel. First, a novel recon gurable software de ned un-coded single-carrier and multi-carrier PLC transceiver is developed for real-time NB-PLC transmission. The transceivers can be adapted to implement di erent waveforms for several real-time scenarios and performance evaluation. Due to the varying noise parameters obtained from country to country as a result of the dependence of noise impairment on mains voltages, topology of power line, place and time, the developed transceivers is capable of facilitating constant measurement campaigns to capture these varying noise parameters before statistical and mathematically inclined channel models are derived. Furthermore, the single-carrier (Binary Phase Shift Keying (BPSK), Di erential BPSK (DBPSK), Quadrature Phase Shift Keying (QPSK) and Di erential QPSK (DQPSK)) PLC transceiver system developed is used to facilitate a First-Order semi-hidden Fritchman Markov modeling (SHFMM) of the NB-PLC channel utilizing the e cient iterative Baum- Welch algorithm (BWA) for parameter estimation. The performance of each modulation scheme is evaluated in a mildly and heavily disturbed scenarios for both residential and laboratory site considered. The First-Order estimated error statistics of the realized First- Order SHFMM have been analytically validated in terms of performance metrics such as: log-likelihood ratio (LLR), error-free run distribution (EFRD), error probabilities, mean square error (MSE) and Chi-square ( 2) test. The reliability of the model results is also con rmed by an excellent match between the empirically obtained error sequence and the SHFMM regenerated error sequence as shown by the error-free run distribution plot. This thesis also reports a novel development of a low cost, low complexity Frequency-shift keying (FSK) - On-o keying (OOK) in-house hybrid PLC and VLC system. The functionality of this hybrid PLC-VLC transceiver system was ascertained at both residential and laboratory site at three di erent times of the day: morning, afternoon and evening. A First and Second-Order SHFMM of the hybrid system is realized. The error statistics of the realized First and Second-Order SHFMMs have been analytically validated in terms of LLR, EFRD, error probabilities, MSE and Chi-square ( 2). The Second-Order SHFMMs have also been analytically validated to be superior to the First-Order SHFMMs although at the expense of added computational complexity. The reliability of both First and Second-Order SHFMM results is con rmed by an excellent match between the empirical error sequences and SHFMM re-generated error sequences as shown by the EFRD plot. In addition, the multi-carrier (QPSK-OFDM, Di erential QPSK (DQPSK)-OFDM) and Di erential 8-PSK (D8PSK)-OFDM) PLC transceiver system developed is used to facilitate a First and Second-Order modeling of the NB-PLC system using the SHFMM and BWA for parameter estimation. The performance of each OFDM modulation scheme in evaluated and compared taking into consideration the mildly and heavily disturbed noise scenarios for the two measurement sites considered. The estimated error statistics of the realized SHFMMs have been analytically validated in terms of LLR, EFRD, error probabilities, MSE and Chi-square ( 2) test. The estimated Second-Order SHFMMs have been analytically validated to be outperform the First-Order SHFMMs although with added computational complexity. The reliability of the models is con rmed by an excellent match between the empirical data and SHFMM generated data as shown by the EFRD plot. The statistical models obtained using Baum-Welch to adjust the parameters of the adopted SHFMM are often locally maximized. To solve this problem, a novel Metropolis-Hastings algorithm, a Bayesian inference approach based on Markov Chain Monte Carlo (MCMC) is developed to optimize the parameters of the adopted SHFMM. The algorithm is used to optimize the model results obtained from the single-carrier and multi-carrier PLC systems as well as that of the hybrid PLC-VLC system. Consequently, as deduced from the results, the models obtained utilizing the novel Metropolis-Hastings algorithm are more precise, near optimal model with parameter sets that are closer to the global maxima. Generally, the model results obtained in this thesis are relevant in enhancing transmission reliability on the PLC channel through the use of the models to improve the adopted modulation schemes, create adaptive modulation techniques, develop and evaluate forward error correction (FEC) codes such as a concatenation of Reed-Solomon and Permutation codes and other robust codes suitable for exploiting and mitigating noise impairments encountered on the low voltage NB-PLC channel. Furthermore, the recon gurable software de ned NB-PLC transceiver test-bed developed can be utilized for future measurement campaign as well as adapted for multiple-input and multiple-output (MIMO) PLC applications.MT201
    • …
    corecore