569 research outputs found

    Comparing eye tracking with electrooculography for measuring individual sentence comprehension duration

    Get PDF
    The aim of this study was to validate a procedure for performing the audio-visual paradigm introduced by Wendt et al. (2015) with reduced practical challenges. The original paradigm records eye fixations using an eye tracker and calculates the duration of sentence comprehension based on a bootstrap procedure. In order to reduce practical challenges, we first reduced the measurement time by evaluating a smaller measurement set with fewer trials. The results of 16 listeners showed effects comparable to those obtained when testing the original full measurement set on a different collective of listeners. Secondly, we introduced electrooculography as an alternative technique for recording eye movements. The correlation between the results of the two recording techniques (eye tracker and electrooculography) was r = 0.97, indicating that both methods are suitable for estimating the processing duration of individual participants. Similar changes in processing duration arising from sentence complexity were found using the eye tracker and the electrooculography procedure. Thirdly, the time course of eye fixations was estimated with an alternative procedure, growth curve analysis, which is more commonly used in recent studies analyzing eye tracking data. The results of the growth curve analysis were compared with the results of the bootstrap procedure. Both analysis methods show similar processing durations

    A MATLAB-BASED GUI FOR REMOTE ELECTROOCULOGRAPHY VISUAL EXAMINATION

    Get PDF
    In this work, a MATLAB-based graphical user interface is proposed for the visual examination of several eye movements. The proposed solution is algorithm-based, which localizes the area of the eye movement, removes artifacts, and calculates the view trajectory in terms of direction and orb deviation. To compute the algorithm, a five-electrode configuration is needed. The goodness of the proposed MATLAB-based graphical user interface has been validated, at the Clinic of Child Neurology of University Hospital of Ostrava, through the EEG Wave Program, which was considered as “gold standard” test. The proposed solution can help physicians on studying cerebral diseases, or to be used for the development of human-machine interfaces useful for the improvement of the digital era that surrounds us today

    Analysis of different level of EOG signal from eye movement for wheelchair control

    Get PDF
    This paper is aimed to analyze different levels of eye movement signals strength using Electrooculography (EOG). The eye movement that is known to be a significant communication tool for a tetraplegia, can be defined as a paralysis that is caused by serious injuries or illness to a human that lead to a partial or total loss of their lower limb and torso. A person who has such paralysis is highly dependent on an assistant and a wheelchair for movement. It is not always the case where the helper is with the patient all the time, therefore independence is encouraged among the wheelchair users. The signal from the eye muscles that is called electrooculogram is generated at different eye movements’ directions and levels. The eye movement signals are acquired using g.USBamp from G.TEC Medical Engineering GMBH by using Ag/AgCl electrodes. The data is then passed to MATLAB/SIMULINK software for data analysis. Different directions and strength level of eye movement are fed to a virtual wheelchair model developed in MSC.Visual Nastran 4D software to study the effect of the signals on the distance and rotation travelled by the wheelchair. Simulation exercises has verified that different strength of eye movement signals levels that have been processed could be manipulated for helping tetraplegia in their mobility using the wheelchair

    Design of a Wearable Eye-Movement Detection System Based on Electrooculography Signals and Its Experimental Validation.

    Full text link
    In the assistive research area, human-computer interface (HCI) technology is used to help people with disabilities by conveying their intentions and thoughts to the outside world. Many HCI systems based on eye movement have been proposed to assist people with disabilities. However, due to the complexity of the necessary algorithms and the difficulty of hardware implementation, there are few general-purpose designs that consider practicality and stability in real life. Therefore, to solve these limitations and problems, an HCI system based on electrooculography (EOG) is proposed in this study. The proposed classification algorithm provides eye-state detection, including the fixation, saccade, and blinking states. Moreover, this algorithm can distinguish among ten kinds of saccade movements (i.e., up, down, left, right, farther left, farther right, up-left, down-left, up-right, and down-right). In addition, we developed an HCI system based on an eye-movement classification algorithm. This system provides an eye-dialing interface that can be used to improve the lives of people with disabilities. The results illustrate the good performance of the proposed classification algorithm. Moreover, the EOG-based system, which can detect ten different eye-movement features, can be utilized in real-life applications

    A Python-based Brain-Computer Interface Package for Neural Data Analysis

    Get PDF
    Anowar, Md Hasan, A Python-based Brain-Computer Interface Package for Neural Data Analysis. Master of Science (MS), December, 2020, 70 pp., 4 tables, 23 figures, 74 references. Although a growing amount of research has been dedicated to neural engineering, only a handful of software packages are available for brain signal processing. Popular brain-computer interface packages depend on commercial software products such as MATLAB. Moreover, almost every brain-computer interface software is designed for a specific neuro-biological signal; there is no single Python-based package that supports motor imagery, sleep, and stimulated brain signal analysis. The necessity to introduce a brain-computer interface package that can be a free alternative for commercial software has motivated me to develop a toolbox using the python platform. In this thesis, the structure of MEDUSA, a brain-computer interface toolbox, is presented. The features of the toolbox are demonstrated with publicly available data sources. The MEDUSA toolbox provides a valuable tool to biomedical engineers and computational neuroscience researchers

    EOG-Based Human–Computer Interface: 2000–2020 Review

    Get PDF
    Electro-oculography (EOG)-based brain-computer interface (BCI) is a relevant technology influencing physical medicine, daily life, gaming and even the aeronautics field. EOG-based BCI systems record activity related to users' intention, perception and motor decisions. It converts the bio-physiological signals into commands for external hardware, and it executes the operation expected by the user through the output device. EOG signal is used for identifying and classifying eye movements through active or passive interaction. Both types of interaction have the potential for controlling the output device by performing the user's communication with the environment. In the aeronautical field, investigations of EOG-BCI systems are being explored as a relevant tool to replace the manual command and as a communicative tool dedicated to accelerating the user's intention. This paper reviews the last two decades of EOG-based BCI studies and provides a structured design space with a large set of representative papers. Our purpose is to introduce the existing BCI systems based on EOG signals and to inspire the design of new ones. First, we highlight the basic components of EOG-based BCI studies, including EOG signal acquisition, EOG device particularity, extracted features, translation algorithms, and interaction commands. Second, we provide an overview of EOG-based BCI applications in the real and virtual environment along with the aeronautical application. We conclude with a discussion of the actual limits of EOG devices regarding existing systems. Finally, we provide suggestions to gain insight for future design inquiries
    • …
    corecore