22,073 research outputs found

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    On the Relation Between Mobile Encounters and Web Traffic Patterns: A Data-driven Study

    Full text link
    Mobility and network traffic have been traditionally studied separately. Their interaction is vital for generations of future mobile services and effective caching, but has not been studied in depth with real-world big data. In this paper, we characterize mobility encounters and study the correlation between encounters and web traffic profiles using large-scale datasets (30TB in size) of WiFi and NetFlow traces. The analysis quantifies these correlations for the first time, across spatio-temporal dimensions, for device types grouped into on-the-go Flutes and sit-to-use Cellos. The results consistently show a clear relation between mobility encounters and traffic across different buildings over multiple days, with encountered pairs showing higher traffic similarity than non-encountered pairs, and long encounters being associated with the highest similarity. We also investigate the feasibility of learning encounters through web traffic profiles, with implications for dissemination protocols, and contact tracing. This provides a compelling case to integrate both mobility and web traffic dimensions in future models, not only at an individual level, but also at pairwise and collective levels. We have released samples of code and data used in this study on GitHub, to support reproducibility and encourage further research (https://github.com/BabakAp/encounter-traffic).Comment: Technical report with details for conference paper at MSWiM 2018, v3 adds GitHub lin
    • …
    corecore