785 research outputs found

    Measuring Equality in Machine Learning Security Defenses

    Full text link
    The machine learning security community has developed myriad defenses for evasion attacks over the past decade. An understudied question in that community is: for whom do these defenses defend? In this work, we consider some common approaches to defending learned systems and whether those approaches may offer unexpected performance inequities when used by different sub-populations. We outline simple parity metrics and a framework for analysis that can begin to answer this question through empirical results of the fairness implications of machine learning security methods. Many methods have been proposed that can cause direct harm, which we describe as biased vulnerability and biased rejection. Our framework and metric can be applied to robustly trained models, preprocessing-based methods, and rejection methods to capture behavior over security budgets. We identify a realistic dataset with a reasonable computational cost suitable for measuring the equality of defenses. Through a case study in speech command recognition, we show how such defenses do not offer equal protection for social subgroups and how to perform such analyses for robustness training, and we present a comparison of fairness between two rejection-based defenses: randomized smoothing and neural rejection. We offer further analysis of factors that correlate to equitable defenses to stimulate the future investigation of how to assist in building such defenses. To the best of our knowledge, this is the first work that examines the fairness disparity in the accuracy-robustness trade-off in speech data and addresses fairness evaluation for rejection-based defenses.Comment: In Submissio

    Boosting Randomized Smoothing with Variance Reduced Classifiers

    Full text link
    Randomized Smoothing (RS) is a promising method for obtaining robustness certificates by evaluating a base model under noise. In this work, we: (i) theoretically motivate why ensembles are a particularly suitable choice as base models for RS, and (ii) empirically confirm this choice, obtaining state-of-the-art results in multiple settings. The key insight of our work is that the reduced variance of ensembles over the perturbations introduced in RS leads to significantly more consistent classifications for a given input. This, in turn, leads to substantially increased certifiable radii for samples close to the decision boundary. Additionally, we introduce key optimizations which enable an up to 55-fold decrease in sample complexity of RS, thus drastically reducing its computational overhead. Experimentally, we show that ensembles of only 3 to 10 classifiers consistently improve on their strongest constituting model with respect to their average certified radius (ACR) by 5% to 21% on both CIFAR10 and ImageNet, achieving a new state-of-the-art ACR of 0.86 and 1.11, respectively. We release all code and models required to reproduce our results upon publication
    corecore