2,116 research outputs found

    Maximizing the Probability of Delivery of Multipoint Relay Broadcast Protocol in Wireless Ad Hoc Networks with a Realistic Physical Layer

    Get PDF
    It is now commonly accepted that the unit disk graph used to model the physical layer in wireless networks does not reflect real radio transmissions, and that the lognormal shadowing model better suits to experimental simulations. Previous work on realistic scenarios focused on unicast, while broadcast requirements are fundamentally different and cannot be derived from unicast case. Therefore, broadcast protocols must be adapted in order to still be efficient under realistic assumptions. In this paper, we study the well-known multipoint relay protocol (MPR). In the latter, each node has to choose a set of neighbors to act as relays in order to cover the whole 2-hop neighborhood. We give experimental results showing that the original method provided to select the set of relays does not give good results with the realistic model. We also provide three new heuristics in replacement and their performances which demonstrate that they better suit to the considered model. The first one maximizes the probability of correct reception between the node and the considered relays multiplied by their coverage in the 2-hop neighborhood. The second one replaces the coverage by the average of the probabilities of correct reception between the considered neighbor and the 2-hop neighbors it covers. Finally, the third heuristic keeps the same concept as the second one, but tries to maximize the coverage level of the 2-hop neighborhood: 2-hop neighbors are still being considered as uncovered while their coverage level is not higher than a given coverage threshold, many neighbors may thus be selected to cover the same 2-hop neighbors

    Energy Efficient Ant Colony Algorithms for Data Aggregation in Wireless Sensor Networks

    Get PDF
    In this paper, a family of ant colony algorithms called DAACA for data aggregation has been presented which contains three phases: the initialization, packet transmission and operations on pheromones. After initialization, each node estimates the remaining energy and the amount of pheromones to compute the probabilities used for dynamically selecting the next hop. After certain rounds of transmissions, the pheromones adjustment is performed periodically, which combines the advantages of both global and local pheromones adjustment for evaporating or depositing pheromones. Four different pheromones adjustment strategies are designed to achieve the global optimal network lifetime, namely Basic-DAACA, ES-DAACA, MM-DAACA and ACS-DAACA. Compared with some other data aggregation algorithms, DAACA shows higher superiority on average degree of nodes, energy efficiency, prolonging the network lifetime, computation complexity and success ratio of one hop transmission. At last we analyze the characteristic of DAACA in the aspects of robustness, fault tolerance and scalability.Comment: To appear in Journal of Computer and System Science

    An analysis of the lifetime of OLSR networks

    Get PDF
    The Optimized Link State Routing (OLSR) protocol is a well-known route discovery protocol for ad-hoc networks. OLSR optimizes the flooding of link state information through the network using multipoint relays (MPRs). Only nodes selected as MPRs are responsible for forwarding control traffic. Many research papers aim to optimize the selection of MPRs with a specific purpose in mind: e.g., to minimize their number, to keep paths with high Quality of Service or to maximize the network lifetime (the time until the first node runs out of energy). In such analyzes often the effects of the network structure on the MPR selection are not taken into account. In this paper we show that the structure of the network can have a large impact on the MPR selection. In highly regular structures (such as grids) there is even no variation in the MPR sets that result from various MPR selection mechanisms. Furthermore, we study the influence of the network structure on the network lifetime problem in a setting where at regular intervals messages are broadcasted using MPRs. We introduce the ’maximum forcedness ratio’, as a key parameter of the network to describe how much variation there is in the lifetime results of various MPR selection heuristics. Although we focus our attention to OLSR, being a widely implemented protocol, on a more abstract level our results describe the structure of connected sets dominating the 2-hop neighborhood of a node

    On Security and Reliability using Cooperative Transmissions in Sensor Networks

    Get PDF
    Recent work on cooperative communications has demonstrated benefits in terms of improving the reliability of links through diversity and/or increasing the reach of a link compared to a single transmitter transmitting to a single receiver (single-input single-output or SISO). In one form of cooperative transmissions, multiple nodes can act as virtual antenna elements and provide such benefits using space-time coding. In a multi-hop sensor network, a source node can make use of its neighbors as relays with itself to reach an intermediate node, which will use its neighbors and so on to reach the destination. For the same reliability of a link as SISO, the number of hops between a source and destination may be reduced using cooperative transmissions. However, the presence of malicious or compromised nodes in the network impacts the use of cooperative transmissions. Using more relays can increase the reach of a link, but if one or more relays are malicious, the transmission may fail. In this paper, we analyze this problem to understand the conditions under which cooperative transmissions may fare better or worse than SISO transmissions

    Two-Hop Routing with Traffic-Differentiation for QoS Guarantee in Wireless Sensor Networks

    Get PDF
    This paper proposes a Traffic-Differentiated Two-Hop Routing protocol for Quality of Service (QoS) in Wireless Sensor Networks (WSNs). It targets WSN applications having different types of data traffic with several priorities. The protocol achieves to increase Packet Reception Ratio (PRR) and reduce end-to-end delay while considering multi-queue priority policy, two-hop neighborhood information, link reliability and power efficiency. The protocol is modular and utilizes effective methods for estimating the link metrics. Numerical results show that the proposed protocol is a feasible solution to addresses QoS service differenti- ation for traffic with different priorities.Comment: 13 page

    Modeling Routing Overhead Generated by Wireless Proactive Routing Protocols

    Full text link
    In this paper, we present a detailed framework consisting of modeling of routing overhead generated by three widely used proactive routing protocols; Destination-Sequenced Distance Vector (DSDV), Fish-eye State Routing (FSR) and Optimized Link State Routing (OLSR). The questions like, how these protocols differ from each other on the basis of implementing different routing strategies, how neighbor estimation errors affect broadcast of route requests, how reduction of broadcast overhead achieves bandwidth, how to cope with the problem of mobility and density, etc, are attempted to respond. In all of the above mentioned situations, routing overhead and delay generated by the chosen protocols can exactly be calculated from our modeled equations. Finally, we analyze the performance of selected routing protocols using our proposed framework in NS-2 by considering different performance parameters; Route REQuest (RREQ) packet generation, End-to-End Delay (E2ED) and Normalized Routing Load (NRL) with respect to varying rates of mobility and density of nodes in the underlying wireless network

    Informed Network Coding for Minimum Decoding Delay

    Full text link
    Network coding is a highly efficient data dissemination mechanism for wireless networks. Since network coded information can only be recovered after delivering a sufficient number of coded packets, the resulting decoding delay can become problematic for delay-sensitive applications such as real-time media streaming. Motivated by this observation, we consider several algorithms that minimize the decoding delay and analyze their performance by means of simulation. The algorithms differ both in the required information about the state of the neighbors' buffers and in the way this knowledge is used to decide which packets to combine through coding operations. Our results show that a greedy algorithm, whose encodings maximize the number of nodes at which a coded packet is immediately decodable significantly outperforms existing network coding protocols.Comment: Proc. of the IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2008), Atlanta, USA, September 200
    • …
    corecore