10,909 research outputs found

    Modeling and optimum time performance for concurrent processing

    Get PDF
    The development of a new graph theoretic model for describing the relation between a decomposed algorithm and its execution in a data flow environment is presented. Called ATAMM, the model consists of a set of Petri net marked graphs useful for representing decision-free algorithms having large-grained, computationally complex primitive operations. Performance time measures which determine computing speed and throughput capacity are defined, and the ATAMM model is used to develop lower bounds for these times. A concurrent processing operating strategy for achieving optimum time performance is presented and illustrated by example

    When parallel speedups hit the memory wall

    Get PDF
    After Amdahl's trailblazing work, many other authors proposed analytical speedup models but none have considered the limiting effect of the memory wall. These models exploited aspects such as problem-size variation, memory size, communication overhead, and synchronization overhead, but data-access delays are assumed to be constant. Nevertheless, such delays can vary, for example, according to the number of cores used and the ratio between processor and memory frequencies. Given the large number of possible configurations of operating frequency and number of cores that current architectures can offer, suitable speedup models to describe such variations among these configurations are quite desirable for off-line or on-line scheduling decisions. This work proposes new parallel speedup models that account for variations of the average data-access delay to describe the limiting effect of the memory wall on parallel speedups. Analytical results indicate that the proposed modeling can capture the desired behavior while experimental hardware results validate the former. Additionally, we show that when accounting for parameters that reflect the intrinsic characteristics of the applications, such as degree of parallelism and susceptibility to the memory wall, our proposal has significant advantages over machine-learning-based modeling. Moreover, besides being black-box modeling, our experiments show that conventional machine-learning modeling needs about one order of magnitude more measurements to reach the same level of accuracy achieved in our modeling.Comment: 24 page

    Trust Evaluation for Embedded Systems Security research challenges identified from an incident network scenario

    Get PDF
    This paper is about trust establishment and trust evaluations techniques. A short background about trust, trusted computing and security in embedded systems is given. An analysis has been done of an incident network scenario with roaming users and a set of basic security needs has been identified. These needs have been used to derive security requirements for devices and systems, supporting the considered scenario. Using the requirements, a list of major security challenges for future research regarding trust establishment in dynamic networks have been collected and elaboration on some different approaches for future research has been done.This work was supported by the Knowledge foundation and RISE within the ARIES project

    Large-scale structural analysis: The structural analyst, the CSM Testbed and the NAS System

    Get PDF
    The Computational Structural Mechanics (CSM) activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM testbed methods development environment is presented and some numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized

    Parallel Anisotropic Unstructured Grid Adaptation

    Get PDF
    Computational Fluid Dynamics (CFD) has become critical to the design and analysis of aerospace vehicles. Parallel grid adaptation that resolves multiple scales with anisotropy is identified as one of the challenges in the CFD Vision 2030 Study to increase the capacity and capability of CFD simulation. The Study also cautions that computer architectures are undergoing a radical change and dramatic increases in algorithm concurrency will be required to exploit full performance. This paper reviews four different methods to parallel anisotropic grid generation. They cover both ends of the spectrum: (i) using existing state-of-the-art software optimized for a single core and modifying it for parallel platforms and (ii) designing and implementing scalable software with incomplete, but rapidly maturating functionality. A brief overview for each grid adaptation system is presented in the context of a telescopic approach for multilevel concurrency. These methods employ different approaches to enable parallel execution, which provides a unique opportunity to illustrate the relative behavior of each approach. Qualitative and quantitative metric evaluations are used to draw lessons for future developments in this critical area for parallel CFD simulation
    • …
    corecore