88 research outputs found

    Analytical solution of the linear fractional differential equation by Adomian decomposition method

    Get PDF
    AbstractIn this paper, we consider the n-term linear fractional-order differential equation with constant coefficients and obtain the solution of this kind of fractional differential equations by Adomian decomposition method. With the equivalent transmutation, we show that the solution by Adomian decomposition method is the same as the solution by the Green's function. Finally, we illustrate our result with some examples

    Design of neuro-swarming computational solver for the fractional Bagley–Torvik mathematical model

    Get PDF
    This study is to introduce a novel design and implementation of a neuro-swarming computational numerical procedure for numerical treatment of the fractional Bagley–Torvik mathematical model (FBTMM). The optimization procedures based on the global search with particle swarm optimization (PSO) and local search via active-set approach (ASA), while Mayer wavelet kernel-based activation function used in neural network (MWNNs) modeling, i.e., MWNN-PSOASA, to solve the FBTMM. The efficiency of the proposed stochastic solver MWNN-GAASA is utilized to solve three different variants based on the fractional order of the FBTMM. For the meticulousness of the stochastic solver MWNN-PSOASA, the obtained and exact solutions are compared for each variant of the FBTMM with reasonable accuracy. For the reliability of the stochastic solver MWNN-PSOASA, the statistical investigations are provided based on the stability, robustness, accuracy and convergence metrics.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This paper has been partially supported by Fundación Séneca de la Región de Murcia grant numbers 20783/PI/18, and Ministerio de Ciencia, Innovación y Universidades grant number PGC2018-0971-B-100

    Stability analysis of visco-elastically damped structure through Bagley Torvik Equation

    Get PDF
    The stability of fractional-order visco-elastically damped linear system Bagley Torvik equation is analyzed in this paper. The fundamental novelty of this paper is the application of Caputo derivative. Prevailing sufficient spectral conditions are considered to guarantee the stability of linear models. Laplace transform, and Mittag-Leffler functions are utilized to develop the results. Furthermore, asymptotical stability of linear fractional-order models are also achieved through spectral values of the characteristic polynomials. Numerical examples are given to display the effectiveness of suggested method

    Numerical Solution of the Bagley-Torvik Equation Using the Integer-Order Derivatives Expansion

    Get PDF
    Numerical solution of the well-known Bagley-Torvik equation is considered. The fractional-order derivative in the equation is converted, approximately, to ordinary-order derivatives up to second order. Approximated Bagley-Torvik equation is obtained using finite number of terms from the infinite series of integer-order derivatives expansion for the Riemann–Liouville fractional derivative. The Bagley-Torvik equation is a second-order differential equation with constant coefficients. The derived equation, by considering only the first three terms from the infinite series to become a second-order ordinary differential equation with variable coefficients, is numerically solved after it is transformed into a system of first-order ordinary differential equations. The approximation of fractional-order derivative and the order of the truncated error are illustrated through some examples. Comparison between our result and exact analytical solution are made by considering an example with known analytical solution to show the preciseness of our proposed approach

    Approximate Solutions of Fractional Riccati Equations Using the Adomian Decomposition Method

    Get PDF
    The fractional derivative equation has extensively appeared in various applied nonlinear problems and methods for finding the model become a popular topic. Very recently, a novel way was proposed by Duan (2010) to calculate the Adomian series which is a crucial step of the Adomian decomposition method. In this paper, it was used to solve some fractional nonlinear differential equations

    A Semi-Analytic Method for Solving Two-Dimensional Fractional Dispersion Equation

    Get PDF
    In this paper, we use the analytical solution the fractional dispersion equation in two   dimensions by using modified decomposition method. The fractional derivative is described in Caputo's sense. Comparing the numerical results of method with result of the exact   solution   we   observed   that   the results correlate well. Keywords: Modified decomposition method, Fractional derivative, Fractional dispersion equation

    A Novel Method for Analytical Solutions of Fractional Partial Differential Equations

    Get PDF
    A new solution technique for analytical solutions of fractional partial differential equations (FPDEs) is presented. The solutions are expressed as a finite sum of a vector type functional. By employing MAPLE software, it is shown that the solutions might be extended to an arbitrary degree which makes the present method not only different from the others in the literature but also quite efficient. The method is applied to special Bagley-Torvik and Diethelm fractional differential equations as well as a more general fractional differential equation

    A New Method to Solve Fractional Differential Equations: Inverse Fractional Shehu Transform Method

    Get PDF
    In this paper, we propose a new method called the inverse fractional Shehu transform method to solve homogenous and non-homogenous linear fractional differential equations. Fractional derivatives are described in the sense of Riemann-Liouville and Caputo. Illustrative examples are given to demonstrate the validity, efficiency and applicability of the presented method. The solutions obtained by the proposed method are in complete agreement with the solutions available in the literature
    corecore