30,640 research outputs found

    Bayesian inference of nanoparticle-broadened x-ray line profiles

    Full text link
    A single and self-contained method for determining the crystallite-size distribution and shape from experimental x-ray line profile data is presented. We have shown that the crystallite-size distribution can be determined without assuming a functional form for the size distribution, determining instead the size distribution with the least assumptions by applying the Bayesian/MaxEnt method. The Bayesian/MaxEnt method is tested using both simulated and experimental CeO2_{2} data. The results demonstrate that the proposed method can determine size distributions, while making the least number of assumptions. The comparison of the Bayesian/MaxEnt results from experimental CeO2_2 with TEM results is favorableComment: 43 pages, 13 Figures, 5 Table

    A comparative study of multiple-criteria decision-making methods under stochastic inputs

    Get PDF
    This paper presents an application and extension of multiple-criteria decision-making (MCDM) methods to account for stochastic input variables. More in particular, a comparative study is carried out among well-known and widely-applied methods in MCDM, when applied to the reference problem of the selection of wind turbine support structures for a given deployment location. Along with data from industrial experts, six deterministic MCDM methods are studied, so as to determine the best alternative among the available options, assessed against selected criteria with a view toward assigning confidence levels to each option. Following an overview of the literature around MCDM problems, the best practice implementation of each method is presented aiming to assist stakeholders and decision-makers to support decisions in real-world applications, where many and often conflicting criteria are present within uncertain environments. The outcomes of this research highlight that more sophisticated methods, such as technique for the order of preference by similarity to the ideal solution (TOPSIS) and Preference Ranking Organization method for enrichment evaluation (PROMETHEE), better predict the optimum design alternative

    Approximating Pareto frontier using a hybrid line search approach

    Get PDF
    This is the post-print version of the final paper published in Information Sciences. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.The aggregation of objectives in multiple criteria programming is one of the simplest and widely used approach. But it is well known that this technique sometimes fail in different aspects for determining the Pareto frontier. This paper proposes a new approach for multicriteria optimization, which aggregates the objective functions and uses a line search method in order to locate an approximate efficient point. Once the first Pareto solution is obtained, a simplified version of the former one is used in the context of Pareto dominance to obtain a set of efficient points, which will assure a thorough distribution of solutions on the Pareto frontier. In the current form, the proposed technique is well suitable for problems having multiple objectives (it is not limited to bi-objective problems) and require the functions to be continuous twice differentiable. In order to assess the effectiveness of this approach, some experiments were performed and compared with two recent well known population-based metaheuristics namely ParEGO and NSGA II. When compared to ParEGO and NSGA II, the proposed approach not only assures a better convergence to the Pareto frontier but also illustrates a good distribution of solutions. From a computational point of view, both stages of the line search converge within a short time (average about 150 ms for the first stage and about 20 ms for the second stage). Apart from this, the proposed technique is very simple, easy to implement and use to solve multiobjective problems.CNCSIS IDEI 2412, Romani

    Decision support model for the selection of asphalt wearing courses in highly trafficked roads

    Get PDF
    The suitable choice of the materials forming the wearing course of highly trafficked roads is a delicate task because of their direct interaction with vehicles. Furthermore, modern roads must be planned according to sustainable development goals, which is complex because some of these might be in conflict. Under this premise, this paper develops a multi-criteria decision support model based on the analytic hierarchy process and the technique for order of preference by similarity to ideal solution to facilitate the selection of wearing courses in European countries. Variables were modelled using either fuzzy logic or Monte Carlo methods, depending on their nature. The views of a panel of experts on the problem were collected and processed using the generalized reduced gradient algorithm and a distance-based aggregation approach. The results showed a clear preponderance by stone mastic asphalt over the remaining alternatives in different scenarios evaluated through sensitivity analysis. The research leading to these results was framed in the European FP7 Project DURABROADS (No. 605404).The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 605404

    Multicriteria sustainability evaluation of transport networks for selected European countries

    Get PDF
    As an essential economic activity, transportation has complex interactions with the environment and society. Since the concept of sustainable development has become one of the top priorities for nations, there has been a growing interest in evaluating the performance of transport systems with respect to sustainability issues. The main purpose of this study is to introduce a decision making framework to assess the sustainability of the transport networks in a multidimensional setting and a technique to identify non-compromise alternatives. We also propose an elucidation technique to identify according to which criteria a system needs to be improved and how much improvement is required to attain a certain level of sustainability. The proposed methods are applied to a set of selected European countries within a case study

    Regression Driven F--Transform and Application to Smoothing of Financial Time Series

    Full text link
    In this paper we propose to extend the definition of fuzzy transform in order to consider an interpolation of models that are richer than the standard fuzzy transform. We focus on polynomial models, linear in particular, although the approach can be easily applied to other classes of models. As an example of application, we consider the smoothing of time series in finance. A comparison with moving averages is performed using NIFTY 50 stock market index. Experimental results show that a regression driven fuzzy transform (RDFT) provides a smoothing approximation of time series, similar to moving average, but with a smaller delay. This is an important feature for finance and other application, where time plays a key role.Comment: IFSA-SCIS 2017, 5 pages, 6 figures, 1 tabl

    Fuzzy Modeling and Parallel Distributed Compensation for Aircraft Flight Control from Simulated Flight Data

    Get PDF
    A method is described that combines fuzzy system identification techniques with Parallel Distributed Compensation (PDC) to develop nonlinear control methods for aircraft using minimal a priori knowledge, as part of NASAs Learn-to-Fly initiative. A fuzzy model was generated with simulated flight data, and consisted of a weighted average of multiple linear time invariant state-space cells having parameters estimated using the equation-error approach and a least-squares estimator. A compensator was designed for each subsystem using Linear Matrix Inequalities (LMI) to guarantee closed-loop stability and performance requirements. This approach is demonstrated using simulated flight data to automatically develop a fuzzy model and design control laws for a simplified longitudinal approximation of the F-16 nonlinear flight dynamics simulation. Results include a comparison of flight data with the estimated fuzzy models and simulations that illustrate the feasibility and utility of the combined fuzzy modeling and control approach
    corecore