399,732 research outputs found

    RPPM : Rapid Performance Prediction of Multithreaded workloads on multicore processors

    Get PDF
    Analytical performance modeling is a useful complement to detailed cycle-level simulation to quickly explore the design space in an early design stage. Mechanistic analytical modeling is particularly interesting as it provides deep insight and does not require expensive offline profiling as empirical modeling. Previous work in mechanistic analytical modeling, unfortunately, is limited to single-threaded applications running on single-core processors. This work proposes RPPM, a mechanistic analytical performance model for multi-threaded applications on multicore hardware. RPPM collects microarchitecture-independent characteristics of a multi-threaded workload to predict performance on a previously unseen multicore architecture. The profile needs to be collected only once to predict a range of processor architectures. We evaluate RPPM's accuracy against simulation and report a performance prediction error of 11.2% on average (23% max). We demonstrate RPPM's usefulness for conducting design space exploration experiments as well as for analyzing parallel application performance

    High-speed simulation of PCB emission and immunity with frequency-domain IC/LSI source models

    Get PDF
    Some recent results from research conducted in the EMC group at Okayama University are reviewed. A scheme for power-bus modeling with an analytical method is introduced. A linear macro-model for ICs/LSIs, called the LECCS model, has been developed for EMI and EMS simulation. This model has a very simple structure and is sufficiently accurate. Combining the LECCS model with analytical simulation techniques for power-bus resonance simulation provides a method for high-speed EMI simulation and decoupling evaluation related to PCB and LSI design. A useful explanation of the common-mode excitation mechanism, which utilizes the imbalance factor of a transmission line, is also presented. Some of the results were investigated by implementing prototypes of a high-speed EMI simulator, HISES. </p

    Power aware early design stage hardware software co-optimization

    Get PDF
    Co-optimizing hardware and software can lead to substantial performance and energy benefits, and is becoming an increasingly important design paradigm. In scientific computing, power constraints increasingly necessitate the return to specialized chips such as Intel’s MIC or IBM’s Blue-Gene architectures. To enable hardware/software co-design in early stages of the design cycle, we propose a simulation infrastructure methodology by combining high-abstraction performance simulation using Sniper with power modeling using McPAT and custom DRAM power models. Sniper/McPAT is fast — simulation speed is around 2 MIPS on an 8-core host machine — because it uses analytical modeling to abstract away core performance during multi-core simulation. We demonstrate Sniper/McPAT’s accuracy through validation against real hardware; we report average performance and power prediction errors of 22.1% and 8.3%, respectively, for a set of SPEComp benchmarks

    Modeling OpAmp-induced harmonic distortion for switched-capacitor ΣΔ modulator design

    Get PDF
    This communication reports a new modeling of opamp-induced harmonic distortion in SC ΣΔ modulators, which is aimed to optimum design of this kind of circuit for high-performance applications. We analyze incomplete transfer of charge in a SC integrator and use power expansion and nonlinear fitting to obtain analytical models to represent harmonic distortion as function of the opamp finite gain-bandwidth (GB), slew-rate (SR) and nonlinear DC gain. Calculated models apply for all modulator architectures where harmonic distortion is dominated by the first integrator in the chain. We show that results provided by the new analytical models fit well to that obtained by simulation in time domain and have accuracy levels much larger than that provided by previously reported modeling approaches

    Business process modeling and simulation

    Get PDF
    The textbook provides the essentials of the Business Process (BP) Modeling and Simulation (M&S) from the verbal BP description to the formulation of the mathematical scheme of the model and the simulation program. Both the analytical modeling and the simulation approaches to BP M&S are considered. Special attention is given to the theoretical and practical aspects of the BP M&S. The text covers the following topics: fundamentals of the BP M&S, conceptual modeling using IDEF3 standard, cost metrics and the activity based costing, analytical modeling (queuing networks, linear and dynamic programming), simulation with GPSS, timed Petri Nets, and Crystal Ball toolkits. Case studies include BP simulations with BPwin and GPSS. The intended readers are senior graduate students and junior postgraduate students of computer science and industrial management

    High-accuracy Geant4 simulation and semi-analytical modeling of nuclear resonance fluorescence

    Full text link
    Nuclear resonance fluorescence (NRF) is a photonuclear interaction that enables highly isotope-specific measurements in both pure and applied physics scenarios. High-accuracy design and analysis of NRF measurements in complex geometries is aided by Monte Carlo simulations of photon physics and transport, motivating Jordan and Warren (2007) to develop the G4NRF codebase for NRF simulation in Geant4. In this work, we enhance the physics accuracy of the G4NRF code and perform improved benchmarking simulations. The NRF cross section calculation in G4NRF, previously a Gaussian approximation, has been replaced with a full numerical integration for improved accuracy in thick-target scenarios. A high-accuracy semi-analytical model of expected NRF count rates in a typical NRF measurement is then constructed and compared against G4NRF simulations for both simple homogeneous and more complex heterogeneous geometries. Agreement between rates predicted by the semi-analytical model and G4NRF simulation is found at a level of ∌1%{\sim}1\% in simple test cases and ∌3%{\sim}3\% in more realistic scenarios, improving upon the ∌20%{\sim}20\% level of the initial benchmarking study and establishing a highly-accurate NRF framework for Geant4.Comment: 16 pages, 6 figures, revised for peer revie

    Semi-Numerical Simulation of Reionization with Semi-Analytical Modeling of Galaxy Formation

    Full text link
    In a semi-numerical model of reionization, the evolution of ionization fraction is simulated approximately by the ionizing photon to baryon ratio criterion. In this paper we incorporate a semi-analytical model of galaxy formation based on the Millennium II N-body simulation into the semi-numerical modeling of reionization. The semi-analytical model is used to predict the production of ionizing photons, then we use the semi-numerical method to model the reionization process. Such an approach allows more detailed modeling of the reionization, and also connects observations of galaxies at low and high redshifts to the reionization history. The galaxy formation model we use was designed to match the low-zz observations, and it also fits the high redshift luminosity function reasonably well, but its prediction on the star formation falls below the observed value, and we find that it also underpredicts the stellar ionizing photon production rate, hence the reionization can not be completed at z∌6z \sim 6 without taking into account some other potential sources of ionization photons. We also considered simple modifications of the model with more top heavy initial mass functions (IMF), with which the reionization can occur at earlier epochs. The incorporation of the semi-analytical model may also affect the topology of the HI regions during the EoR, and the neutral regions produced by our simulations with the semi-analytical model appeared less poriferous than the simple halo-based models.Comment: 13 pages, 8 figures, RAA accepte

    Space-time numerical simulation and validation of analytical predictions for nonlinear forced dynamics of suspended cables

    Get PDF
    This paper presents space-time numerical simulation and validation of analytical predictions for the finite-amplitude forced dynamics of suspended cables. The main goal is to complement analytical and numerical solutions, accomplishing overall quantitative/qualitative comparisons of nonlinear response characteristics. By relying on an approximate, kinematically non-condensed, planar modeling, a simply supported horizontal cable subject to a primary external resonance and a 1:1, or 1:1 vs. 2:1, internal resonance is analyzed. To obtain analytical solution, a second-order multiple scales approach is applied to a complete eigenfunction-based series of nonlinear ordinary-differential equations of cable damped forced motion. Accounting for both quadratic/cubic geometric nonlinearities and multiple modal contributions, local scenarios of cable uncoupled/coupled responses and associated stability are predicted, based on chosen reduced-order models. As a cross-checking tool, numerical simulation of the associated nonlinear partial-differential equations describing the dynamics of the actual infinite-dimensional system is carried out using a finite difference technique employing a hybrid explicit-implicit integration scheme. Based on system control parameters and initial conditions, cable amplitude, displacement and tension responses are numerically assessed, thoroughly validating the analytically predicted solutions as regards the actual existence, the meaningful role and the predominating internal resonance of coexisting/competing dynamics. Some methodological aspects are noticed, along with a discussion on the kinematically approximate versus exact, as well as planar versus non-planar, cable modeling

    Analytical modeling and 3D finite element simulation of line edge roughness in scatterometry

    Full text link
    The influence of edge roughness in angle resolved scatterometry at periodically structured surfaces is investigated. A good description of the radiation interaction with structured surfaces is crucial for the understanding of optical imaging processes like, e.g. in photolithography. We compared an analytical 2D model and a numerical 3D simulation with respect to the characterization of 2D diffraction of a line grating involving structure roughness. The results show a remarkably high agreement. The diffraction intensities of a rough structure can therefore be estimated using the numerical simulation result of an undisturbed structure and an analytically derived correction function. This work allows to improve scatterometric results for the case of practically relevant 2D structures

    Pre-shuttle lidar system research

    Get PDF
    Included are the results of the initial phase of a simulation study in connection with photomultiplier tubes (PMT) and associated networks and an analytical study of atmospheric physics (including multiscattering) leading to modeling studies in connection with differential absorption lidar (DIAL) observations. This effort was in support of the ER-2 aircraft DIAL projects
    • 

    corecore