3,016 research outputs found

    Analytical performance modeling of elastic optical links with aligned spectrum allocation

    Get PDF
    Abstract Elastic optical networking has recently been proposed for use in optical transport networks to cope with increasingly heterogeneous and dynamic demand patterns. In this paper, we study the blocking performance of a multi-class elastic optical link for which a demand needs to be allocated a contiguous subset of the entire spectrum. This problem is different than the well-known blocking problem in multi-class multi-server loss systems due to the contiguous allocation constraint. We first propose a non-work-conserving aligned spectrum allocation policy which is shown to outperform the conventional first fit-based work-conserving allocation policy without alignment. Subsequently, for blocking performance of an aligned elastic optical link with up to three different traffic classes, we propose a novel and systematic order reduction procedure for MMPPs (Markov Modulated Poisson Process) and use this procedure as the numerical engine to approximately obtain the blocking probabilities. The proposed numerical algorithm is validated under various system and traffic parameters and is shown to be effectively usable as an instrument to dimension elastic optical links. © 2015 Elsevier B.V

    Stochastische Analyse und lernbasierte Algorithmen zur Ressourcenbereitstellung in optischen Netzwerken

    Get PDF
    The unprecedented growth in Internet traffic has driven the innovations in provisioning of optical resources as per the need of bandwidth demands such that the resource utilization and spectrum efficiency could be maximized. With the advent of the next generation flexible optical transponders and switches, the flexible-grid-based elastic optical network (EON) is foreseen as an alternative to the widely deployed fixed-grid-based wavelength division multiplexing networks. At the same time, the flexible resource provisioning also raises new challenges for EONs. One such challenge is the spectrum fragmentation. As network traffic varies over time, spectrum gets fragmented due to the setting up and tearing down of non-uniform bandwidth requests over aligned (i.e., continuous) and adjacent (i.e., contiguous) spectrum slices, which leads to a non-optimal spectrum allocation, and generally results in higher blocking probability and lower spectrum utilization in EONs. To address this issue, the allocation and reallocation of optical resources are required to be modeled accurately, and managed efficiently and intelligently. The modeling of routing and spectrum allocation in EONs with the spectrum contiguity and spectrum continuity constraints is well-investigated, but existing models do not consider the fragmentation issue resulted by these constraints and non-uniform bandwidth demands. This thesis addresses this issue and considers both the constraints to computing exact blocking probabilities in EONs with and without spectrum conversion, and with spectrum reallocation (known as defragmentation) for the first time using the Markovian approach. As the exact network models are not scalable with respect to the network size and capacity, this thesis proposes load-independent and load-dependent approximate models to compute approximate blocking probabilities in EONs. Results show that the connection blocking due to fragmentation can be reduced by using a spectrum conversion or a defragmentation approach, but it can not be eliminated in a mesh network topology. This thesis also deals with the important network resource provisioning task in EONs. To this end, it first presents algorithmic solutions to efficiently allocate and reallocate spectrum resources using the fragmentation factor along spectral, time, and spatial dimensions. Furthermore, this thesis highlights the role of machine learning techniques in alleviating issues in static provisioning of optical resources, and presents two use-cases: handling time-varying traffic in optical data center networks, and reducing energy consumption and allocating spectrum proportionately to traffic classes in fiber-wireless networks.Die flexible Nutzung des Spektrums bringt in Elastischen Optischen Netze (EON) neue Herausforderungen mit sich, z.B., die Fragmentierung des Spektrums. Die Fragmentierung entsteht dadurch, dass die Netzwerkverkehrslast sich im Laufe der Zeit ändert und so wird das Spektrum aufgrund des Verbindungsaufbaus und -abbaus fragmentiert. Das für eine Verbindung notwendige Spektrum wird durch aufeinander folgende (kontinuierliche) und benachbarte (zusammenhängende) Spektrumsabschnitte (Slots) gebildet. Dies führt nach den zahlreichen Reservierungen und Freisetzungen des Spektrums zu einer nicht optimalen Zuordnung, die in einer höheren Blockierungs-wahrscheinlichkeit der neuen Verbindungsanfragen und einer geringeren Auslastung von EONs resultiert. Um dieses Problem zu lösen, müssen die Zuweisung und Neuzuordnung des Spektrums in EONs genau modelliert und effizient sowie intelligent verwaltet werden. Diese Arbeit beschäftigt sich mit dem Fragmentierungsproblem und berücksichtigt dabei die beiden Einschränkungen: Kontiguität und Kontinuität. Unter diesen Annahmen wurden analytische Modelle zur Berechnung einer exakten Blockierungswahrscheinlichkeit in EONs mit und ohne Spektrumskonvertierung erarbeitet. Außerdem umfasst diese Arbeit eine Analyse der Blockierungswahrscheinlichkeit im Falle einer Neuzuordnung des Sprektrums (Defragmentierung). Diese Blockierungsanalyse wird zum ersten Mal mit Hilfe der Markov-Modelle durchgeführt. Da die exakten analytischen Modelle hinsichtlich der Netzwerkgröße und -kapazität nicht skalierbar sind, werden in dieser Dissertation verkehrslastunabhängige und verkehrslastabhängige Approximationsmodelle vorgestellt. Diese Modelle bieten eine Näherung der Blockierungswahrscheinlichkeiten in EONs. Die Ergebnisse zeigen, dass die Blockierungswahrscheinlichkeit einer Verbindung aufgrund von einer Fragmentierung des Spektrums durch die Verwendung einer Spektrumkonvertierung oder eines Defragmentierungsverfahrens verringert werden kann. Eine effiziente Bereitstellung der optischen Netzwerkressourcen ist eine wichtige Aufgabe von EONs. Deswegen befasst sich diese Arbeit mit algorithmischen Lösungen, die Spektrumressource mithilfe des Fragmentierungsfaktors von Spektral-, Zeit- und räumlichen Dimension effizient zuweisen und neu zuordnen. Darüber hinaus wird die Rolle des maschinellen Lernens (ML) für eine verbesserte Bereitstellung der optischen Ressourcen untersucht und das ML basierte Verfahren mit der statischen Ressourcenzuweisung verglichen. Dabei werden zwei Anwendungsbeispiele vorgestellt und analysiert: der Umgang mit einer zeitveränderlichen Verkehrslast in optischen Rechenzentrumsnetzen, und eine Verringerung des Energieverbrauchs und die Zuweisung des Spektrums proportional zu Verkehrsklassen in kombinierten Glasfaser-Funknetzwerken

    Enabling Technologies for Cognitive Optical Networks

    Get PDF

    Resource orchestration strategies with retrials for latency-sensitive network slicing over distributed telco clouds

    Get PDF
    The new radio technologies (i.e. 5G and beyond) will allow a new generation of innovative services operated by vertical industries (e.g. robotic cloud, autonomous vehicles, etc.) with more stringent QoS requirements, especially in terms of end-to-end latency. Other technological changes, such as Network Function Virtualization (NFV) and Software-Defined Networking (SDN), will bring unique service capabilities to networks by enabling flexible network slicing that can be tailored to the needs of vertical services. However, effective orchestration strategies need to be put in place to offer latency minimization while also maximizing resource utilization for telco providers to address vertical requirements and increase their revenue. Looking at this objective, this paper addresses a latency-sensitive orchestration problem by proposing different strategies for the coordinated selection of virtual resources (network, computational, and storage resources) in distributed DCs while meeting vertical requirements (e.g., bandwidth demand) for network slicing. Three orchestration strategies are presented to minimize latency or the blocking probability through effective resource utilization. To further reduce the slice request blocking, orchestration strategies also encompass a retrial mechanism applied to rejected slice requests. Regarding latency, two components were considered, namely processing and network latency. An extensive set of simulations was carried out over a wide and composite telco cloud infrastructure in which different types of data centers coexist characterized by a different network location, size, and processing capacity. The results compare the behavior of the strategies in addressing latency minimization and service request fulfillment, also considering the impact of the retrial mechanism.This work was supported in part by the Department of Excellence in Robotics and Artificial Intelligence by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) to Scuola Superiore Sant’Anna, and in part by the Project 5GROWTH under Agreement 856709

    Control Plane in Software Defined Networks and Stateful Data Planes

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Anwendung von maschinellem Lernen in der optischen NachrichtenĂĽbertragungstechnik

    Get PDF
    Aufgrund des zunehmenden Datenverkehrs wird erwartet, dass die optischen Netze zukünftig mit höheren Systemkapazitäten betrieben werden. Dazu wird bspw. die kohärente Übertragung eingesetzt, bei der das Modulationsformat erhöht werden kann, erforder jedoch ein größeres SNR. Um dies zu erreichen, wird die optische Signalleistung erhöht, wodurch die Datenübertragung durch die nichtlinearen Beeinträchtigungen gestört wird. Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung von Modellen des maschinellen Lernens, die auf diese nichtlineare Signalverschlechterung reagieren. Es wird die Support-Vector-Machine (SVM) implementiert und als klassifizierende Entscheidungsmaschine verwendet. Die Ergebnisse zeigen, dass die SVM eine verbesserte Kompensation sowohl der nichtlinearen Fasereffekte als auch der Verzerrungen der optischen Systemkomponenten ermöglicht. Das Prinzip von EONs bietet eine Technologie zur effizienten Nutzung der verfügbaren Ressourcen, die von der optischen Faser bereitgestellt werden. Ein Schlüsselelement der Technologie ist der bandbreitenvariable Transponder, der bspw. die Anpassung des Modulationsformats oder des Codierungsschemas an die aktuellen Verbindungsbedingungen ermöglicht. Um eine optimale Ressourcenauslastung zu gewährleisten wird der Einsatz von Algorithmen des Reinforcement Learnings untersucht. Die Ergebnisse zeigen, dass der RL-Algorithmus in der Lage ist, sich an unbekannte Link-Bedingungen anzupassen, während vergleichbare heuristische Ansätze wie der genetische Algorithmus für jedes Szenario neu trainiert werden müssen
    • …
    corecore