556 research outputs found

    Modelling of field-effect transistors based on 2D materials targeting high-frequency applications

    Get PDF
    New technologies are necessary for the unprecedented expansion of connectivity and communications in the modern technological society. The specific needs of wireless communication systems in 5G and beyond, as well as devices for the future deployment of Internet of Things has caused that the International Technology Roadmap for Semiconductors, which is the strategic planning document of the semiconductor industry, considered since 2011, graphene and related materials (GRMs) as promising candidates for the future of electronics. Graphene, a one-atom-thick of carbon, is a promising material for high-frequency applications due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that GRM-based field-effect transistors could potentially outperform other technologies. This thesis presents a body of work on the modelling, performance prediction and simulation of GRM-based field-effect transistors and circuits. The main goal of this work is to provide models and tools to ease the following issues: (i) gaining technological control of single layer and bilayer graphene devices and, more generally, devices based on 2D materials, (ii) assessment of radio-frequency (RF) performance and microwave stability, (iii) benchmarking against other existing technologies, (iv) providing guidance for device and circuit design, (v) simulation of circuits formed by GRM-based transistors.Comment: Thesis, 164 pages, http://hdl.handle.net/10803/40531

    Effect of Device Variables on Surface Potential and Threshold Voltage in DG-GNRFET

    Get PDF
    In this paper we present four simple analytical threshold voltage model for short- channel and length of saturation velocity region (LVSR) effect that takes into account the built – in potential of the source and drain channel junction, the surface potential and the surface electric field effect on double – gate graphene nanoribbon transistors. Four established models for surface potential, lateral electric field, LVSR and threshold voltage are presented. These models are based on the easy analytical solution of the two dimensional potential distribution in the graphene and Poisson equation which can be used to obtain surface potential, lateral electric field, LVSR and threshold voltage. These models give a closed form solution of the surface potential and electrical field distribution as a function of structural parameters and drain bias. Most of analytical outcomes are shown to correlate with outcomes acquired by Matlab simulation and the end model applicability to the published silicon base devices is demonstrated

    Analytical model of 1D Carbon-based Schottky-Barrier Transistors

    Full text link
    Nanotransistors typically operate in far-from-equilibrium (FFE) conditions, that cannot be described neither by drift-diffusion, nor by purely ballistic models. In carbonbased nanotransistors, source and drain contacts are often characterized by the formation of Schottky Barriers (SBs), with strong influence on transport. Here we present a model for onedimensional field-effect transistors (FETs), taking into account on equal footing both SB contacts and FFE transport regime. Intermediate transport is introduced within the Buttiker probe approach to dissipative transport, in which a non-ballistic transistor is seen as a suitable series of individually ballistic channels. Our model permits the study of the interplay of SBs and ambipolar FFE transport, and in particular of the transition between SB-limited and dissipation-limited transport

    Engineering interband tunneling in nanowires with diamond cubic or zincblende crystalline structure based on atomistic modeling

    Get PDF
    We present an investigation in the device parameter space of band-to-band tunneling in nanowires with a diamond cubic or zincblende crystalline structure. Results are obtained from quantum transport simulations based on Non-Equilibrium Green's functions with a tight-binding atomistic Hamiltonian. Interband tunneling is extremely sensitive to the longitudinal electric field, to the nanowire cross section, through the gap, and to the material. We have derived an approximate analytical expression for the transmission probability based on WKB theory and on a proper choice of the effective interband tunneling mass, which shows good agreement with results from atomistic quantum simulation.Comment: 4 pages, 3 figures. Final version, published in IEEE Trans. Nanotechnol. It differs from the previous arXiv version for the title and for some changes in the text and in the reference
    • …
    corecore