874 research outputs found

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    TOWARD LAYERLESS COOPERATION AND RATE CONTROL IN WIRELESS MULTI-ACCESS CHANNELS

    Get PDF
    In wireless networks, a transmitted message may successfully reach multiple nodes simultaneously, which is referred to as the Wireless Multicast Advantage. As such, intermediate nodes have the ability to capture the message and then contribute to the communication toward the ultimate destination by cooperatively relaying the received message. This enables cooperative communication, which has been shown to counteract the effects of fading and attenuation in wireless networks. There has been a great deal of work addressing cooperative methods and their resulting benefits, but most of the work to date has focused on physical-layer techniques and on information-theoretic considerations. While compatible with these, the main thrust of this dissertation is to explore a new approach by implementing cooperation at the network layer. First, we illustrate the idea in a multi-hop multi-access wireless network, in which a set of source users generate packets to deliver to a common destination. An opportunistic and dynamic cooperation protocol is proposed at the network level, where users with a better channel to the destination have the capability and option to relay packets from users that are farther afield. The proposed mode of cooperation protocol is new and relies on MAC/Network-level of relaying, but also takes into account physical-layer parameters that determine successful reception at the destination and/or the relay. We explicitly characterize the stable throughput and average delay performance. Our analysis reveals that cooperation at the network layer leads to substantial performance gains for both performance metrics. Next, on top of the network-layer cooperation, we investigate enhanced cooperative techniques that exploit more sophisticated physical-layer properties. Specifically, we consider dynamic decode-and-forward, superposition coding, and multipacket reception capability, and we quantify the extent to which the enhancement techniques can further improve the stable throughput region. Then we revert back to the two-user multi-access channel with single-packet reception, which has been extensively studied in the case of no cooperation. After cooperation is permitted between the two users, we revisit the relationship between the stability region and the throughput region under both scheduled access and random access schemes. Finally, we shift our focus from the packet-level to bit-level multi-access channels. By exploiting the bit-nature of a packet, we create a bridge between traditional physical-layer-based transmission rates and classical MAC/Network-layer-based throughput rates. We first obtain the closed form of the stability region in bits/slot. Then, as a separate, but related issue, we look at the minimum delivery time policy; for any initial queue size vector, the optimal policy that empties all bits in the system within the shortest time is characterized

    Delay QoS Provisioning and Optimal Resource Allocation for Wireless Networks

    Get PDF
    Recent years have witnessed a significant growth in wireless communication and networking due to the exponential growth in mobile applications and smart devices, fueling unprecedented increase in both mobile data traffic and energy demand. Among such data traffic, real-time data transmissions in wireless systems require certain quality of service (QoS) constraints e.g., in terms of delay, buffer overflow or packet drop/loss probabilities, so that acceptable performance levels can be guaranteed for the end-users, especially in delay sensitive scenarios, such as live video transmission, interactive video (e.g., teleconferencing), and mobile online gaming. With this motivation, statistical queuing constraints are considered in this thesis, imposed as limitations on the decay rate of buffer overflow probabilities. In particular, the throughput and energy efficiency of different types of wireless network models are analyzed under QoS constraints, and optimal resource allocation algorithms are proposed to maximize the throughput or minimize the delay. In the first part of the thesis, the throughput and energy efficiency analysis for hybrid automatic repeat request (HARQ) protocols are conducted under QoS constraints. Approximations are employed for small QoS exponent values in order to obtain closed-form expressions for the throughput and energy efficiency metrics. Also, the impact of random arrivals, deadline constraints, outage probability and QoS constraints are studied. For the same system setting, the throughput of HARQ system is also analyzed using a recurrence approach, which provides more accurate results for any value of the QoS exponent. Similarly, random arrival models and deadline constraints are considered, and these results are further extended to the finite-blocklength coding regime. Next, cooperative relay networks are considered under QoS constraints. Specifically, the throughput performance in the two-hop relay channel, two-way relay channel, and multi-source multi-destination relay networks is analyzed. Finite-blocklength codes are considered for the two-hop relay channel, and optimization over the error probabilities is investigated. For the multi-source multi-destination relay network model, the throughput for both cases of with and without CSI at the transmitter sides is studied. When there is perfect CSI at the transmitter, transmission rates can be varied according to instantaneous channel conditions. When CSI is not available at the transmitter side, transmissions are performed at fixed rates, and decoding failures lead to retransmission requests via an ARQ protocol. Following the analysis of cooperative networks, the performance of both half-duplex and full-duplex operations is studied for the two-way multiple input multiple output (MIMO) system under QoS constraints. In full-duplex mode, the self-interference inflicted on the reception of a user due to simultaneous transmissions from the same user is taken into account. In this setting, the system throughput is formulated by considering the sum of the effective capacities of the users in both half-duplex and full-duplex modes. The low signal to noise ratio (SNR) regime is considered and the optimal transmission/power-allocation strategies are characterized by identifying the optimal input covariance matrices. Next, mode selection and resource allocation for device-to-device (D2D) cellular networks are studied. As the starting point, ransmission mode selection and resource allocation are analyzed for a time-division multiplexed (TDM) cellular network with one cellular user, one base station, and a pair of D2D users under rate and QoS constraints. For a more complicated setting with multiple cellular and D2D users, two joint mode selection and resource allocation algorithms are proposed. In the first algorithm, the channel allocation problem is formulated as a maximum-weight matching problem, which can be solved by employing the Hungarian algorithm. In the second algorithm, the problem is divided into three subproblems, namely user partition, power allocation and channel assignment, and a novel three-step method is proposed by combining the algorithms designed for the three subproblems. In the final part of the thesis, resource allocation algorithms are investigated for content delivery over wireless networks. Three different systems are considered. Initially, a caching algorithm is designed, which minimizes the average delay of a single-cell network. The proposed algorithm is applicable in settings with very general popularity models, with no assumptions on how file popularity varies among different users, and this algorithm is further extended to a more general setting, in which the system parameters and the distributions of channel fading change over time. Next, for D2D cellular networks operating under deadline constraints, a scheduling algorithm is designed, which manages mode selection, channel allocation and power maximization with acceptable complexity. This proposed scheduling algorithm is designed based on the convex delay cost method for a D2D cellular network with deadline constraints in an OFDMA setting. Power optimization algorithms are proposed for all possible modes, based on our utility definition. Finally, a two-step intercell interference (ICI)-aware scheduling algorithm is proposed for cloud radio access networks (C-RANs), which performs user grouping and resource allocation with the goal of minimizing delay violation probability. A novel user grouping algorithm is developed for the user grouping step, which controls the interference among the users in the same group, and the channel assignment problem is formulated as a maximum-weight matching problem in the second step, which can be solved using standard algorithms in graph theory

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Achieving Quality of Service Guarantees for Delay Sensitive Applications in Wireless Networks

    Get PDF
    In the past few years, we have witnessed the continuous growth in popularity of delay-sensitive applications. Applications like live video streaming, multimedia conferencing, VoIP and online gaming account for a major part of Internet traffic these days. It is also predicted that this trend will continue in the coming years. This emphasizes the significance of developing efficient scheduling algorithms in communication networks with guaranteed low delay performance. In our work, we try to address the delay issue in some major instances of wireless communication networks. First, we study a wireless content distribution network (CDN), in which the requests for the content may have service deadlines. Our wireless CDN consists of a media vault that hosts all the content in the system and a number of local servers (base stations), each having a cache for temporarily storing a subset of the content. There are two major questions associated with this framework: (i) content caching: which content should be loaded in each cache? and (ii) wireless network scheduling: how to appropriately schedule the transmissions from wireless servers? Using ideas from queuing theory, we develop provably optimal algorithms to jointly solve the caching and scheduling problems. Next, we focus on wireless relay networks. It is well accepted that network coding can enhance the performance of these networks by exploiting the broadcast nature of the wireless medium. This improvement is usually evaluated in terms of the number of required transmissions for delivering flow packets to their destinations. In this work, we study the effect of delay on the performance of network coding by characterizing a trade-off between latency and the performance gain achieved by employing network coding. More specifically, we associate a holding cost for delaying packets before delivery and a transmission cost for each broadcast transmission made by the relay node. Using a Markov decision process (MDP) argument, we prove a simple threshold-based policy is optimal in the sense of minimum long-run average cost. Finally, we analyze delay-sensitive applications in wireless peer-to-peer (P2P) networks. We consider a hybrid network which consists of (i) an expensive base station-to-peer (B2P) network with unicast transmissions, and (ii) a free broadcast P2P network. In such a framework, we study two popular applications: (a) a content distribution application with service deadlines, and (b) a multimedia live streaming application. In both problems, we utilize random linear network coding over finite fields to simplify the coordination of the transmissions. For these applications, we provide efficient algorithms to schedule the transmissions such that some quality of service (QoS) requirements are satisfied with the minimum cost of B2P usage. The algorithms are proven to be throughput optimal for sufficiently large field sizes and perform reasonably well for finite fields

    Modern Random Access for Satellite Communications

    Full text link
    The present PhD dissertation focuses on modern random access (RA) techniques. In the first part an slot- and frame-asynchronous RA scheme adopting replicas, successive interference cancellation and combining techniques is presented and its performance analysed. The comparison of both slot-synchronous and asynchronous RA at higher layer, follows. Next, the optimization procedure, for slot-synchronous RA with irregular repetitions, is extended to the Rayleigh block fading channel. Finally, random access with multiple receivers is considered.Comment: PhD Thesis, 196 page
    • …
    corecore