1,618 research outputs found

    Bayesian nonparametric dependent model for partially replicated data: the influence of fuel spills on species diversity

    Get PDF
    We introduce a dependent Bayesian nonparametric model for the probabilistic modeling of membership of subgroups in a community based on partially replicated data. The focus here is on species-by-site data, i.e. community data where observations at different sites are classified in distinct species. Our aim is to study the impact of additional covariates, for instance environmental variables, on the data structure, and in particular on the community diversity. To that purpose, we introduce dependence a priori across the covariates, and show that it improves posterior inference. We use a dependent version of the Griffiths-Engen-McCloskey distribution defined via the stick-breaking construction. This distribution is obtained by transforming a Gaussian process whose covariance function controls the desired dependence. The resulting posterior distribution is sampled by Markov chain Monte Carlo. We illustrate the application of our model to a soil microbial dataset acquired across a hydrocarbon contamination gradient at the site of a fuel spill in Antarctica. This method allows for inference on a number of quantities of interest in ecotoxicology, such as diversity or effective concentrations, and is broadly applicable to the general problem of communities response to environmental variables.Comment: Main Paper: 22 pages, 6 figures. Supplementary Material: 11 pages, 1 figur

    Extreme robustness of scaling in sample space reducing processes explains Zipf's law in diffusion on directed networks

    Get PDF
    It has been shown recently that a specific class of path-dependent stochastic processes, which reduce their sample space as they unfold, lead to exact scaling laws in frequency and rank distributions. Such Sample Space Reducing processes (SSRP) offer an alternative new mechanism to understand the emergence of scaling in countless processes. The corresponding power law exponents were shown to be related to noise levels in the process. Here we show that the emergence of scaling is not limited to the simplest SSRPs, but holds for a huge domain of stochastic processes that are characterized by non-uniform prior distributions. We demonstrate mathematically that in the absence of noise the scaling exponents converge to −1-1 (Zipf's law) for almost all prior distributions. As a consequence it becomes possible to fully understand targeted diffusion on weighted directed networks and its associated scaling laws law in node visit distributions. The presence of cycles can be properly interpreted as playing the same role as noise in SSRPs and, accordingly, determine the scaling exponents. The result that Zipf's law emerges as a generic feature of diffusion on networks, regardless of its details, and that the exponent of visiting times is related to the amount of cycles in a network could be relevant for a series of applications in traffic-, transport- and supply chain management.Comment: 11 pages, 5 figure

    The Evolutionary Unfolding of Complexity

    Get PDF
    We analyze the population dynamics of a broad class of fitness functions that exhibit epochal evolution---a dynamical behavior, commonly observed in both natural and artificial evolutionary processes, in which long periods of stasis in an evolving population are punctuated by sudden bursts of change. Our approach---statistical dynamics---combines methods from both statistical mechanics and dynamical systems theory in a way that offers an alternative to current ``landscape'' models of evolutionary optimization. We describe the population dynamics on the macroscopic level of fitness classes or phenotype subbasins, while averaging out the genotypic variation that is consistent with a macroscopic state. Metastability in epochal evolution occurs solely at the macroscopic level of the fitness distribution. While a balance between selection and mutation maintains a quasistationary distribution of fitness, individuals diffuse randomly through selectively neutral subbasins in genotype space. Sudden innovations occur when, through this diffusion, a genotypic portal is discovered that connects to a new subbasin of higher fitness genotypes. In this way, we identify innovations with the unfolding and stabilization of a new dimension in the macroscopic state space. The architectural view of subbasins and portals in genotype space clarifies how frozen accidents and the resulting phenotypic constraints guide the evolution to higher complexity.Comment: 28 pages, 5 figure

    4-D Tomographic Inference: Application to SPECT and MR-driven PET

    Get PDF
    Emission tomographic imaging is framed in the Bayesian and information theoretic framework. The first part of the thesis is inspired by the new possibilities offered by PET-MR systems, formulating models and algorithms for 4-D tomography and for the integration of information from multiple imaging modalities. The second part of the thesis extends the models described in the first part, focusing on the imaging hardware. Three key aspects for the design of new imaging systems are investigated: criteria and efficient algorithms for the optimisation and real-time adaptation of the parameters of the imaging hardware; learning the characteristics of the imaging hardware; exploiting the rich information provided by depthof- interaction (DOI) and energy resolving devices. The document concludes with the description of the NiftyRec software toolkit, developed to enable 4-D multi-modal tomographic inference

    Markovian Dynamics on Complex Reaction Networks

    Full text link
    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underling population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions, the computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.Comment: 52 pages, 11 figures, for freely available MATLAB software, see http://www.cis.jhu.edu/~goutsias/CSS%20lab/software.htm

    Maximum Configuration Principle for Driven Systems with Arbitrary Driving

    Get PDF
    Depending on context, the term entropy is used for a thermodynamic quantity, a measure of available choice, a quantity to measure information, or, in the context of statistical inference, a maximum configuration predictor. For systems in equilibrium or processes without memory, the mathematical expression for these different concepts of entropy appears to be the so-called Boltzmann–Gibbs–Shannon entropy, H. For processes with memory, such as driven- or self- reinforcing-processes, this is no longer true: the different entropy concepts lead to distinct functionals that generally differ from H. Here we focus on the maximum configuration entropy (that predicts empirical distribution functions) in the context of driven dissipative systems. We develop the corresponding framework and derive the entropy functional that describes the distribution of observable states as a function of the details of the driving process. We do this for sample space reducing (SSR) processes, which provide an analytically tractable model for driven dissipative systems with controllable driving. The fact that a consistent framework for a maximum configuration entropy exists for arbitrarily driven non-equilibrium systems opens the possibility of deriving a full statistical theory of driven dissipative systems of this kind. This provides us with the technical means needed to derive a thermodynamic theory of driven processes based on a statistical theory. We discuss the Legendre structure for driven systems
    • …
    corecore